logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Applications of Lie Groups to Differential Equations

Applications of Lie Groups to Differential Equations (Paperback, 2, 1993. 3rd Print)

Peter J. Olver (지은이), S. Axler, F. W. Gehring, K. A. Ribet (엮은이)
Springer Verlag
96,060원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
78,760원 -18% 0원
3,940원
74,820원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Applications of Lie Groups to Differential Equations
eBook 미리보기

책 정보

· 제목 : Applications of Lie Groups to Differential Equations (Paperback, 2, 1993. 3rd Print) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 미분방정식 > 미분방정식 일반
· ISBN : 9780387950006
· 쪽수 : 513쪽
· 출판일 : 2000-01-21

목차

1 Introduction to Lie Groups.- 1.1. Manifolds.- Change of Coordinates.- Maps Between Manifolds.- The Maximal Rank Condition.- Submanifolds.- Regular Submanifolds.- Implicit Submanifolds.- Curves and Connectedness.- 1.2. Lie Groups.- Lie Subgroups.- Local Lie Groups.- Local Transformation Groups.- Orbits.- 1.3. Vector Fields.- Flows.- Action on Functions.- Differentials.- Lie Brackets.- Tangent Spaces and Vectors Fields on Submanifolds.- Frobenius' Theorem.- 1.4. Lie Algebras.- One-Parameter Subgroups.- Subalgebras.- The Exponential Map.- Lie Algebras of Local Lie Groups.- Structure Constants.- Commutator Tables.- Infinitesimal Group Actions.- 1.5. Differential Forms.- Pull-Back and Change of Coordinates.- Interior Products.- The Differential.- The de Rham Complex.- Lie Derivatives.- Homotopy Operators.- Integration and Stokes' Theorem.- Notes.- Exercises.- 2 Symmetry Groups of Differential Equations.- 2.1. Symmetries of Algebraic Equations.- Invariant Subsets.- Invariant Functions.- Infinitesimal Invariance.- Local Invariance.- Invariants and Functional Dependence.- Methods for Constructing Invariants.- 2.2. Groups and Differential Equations.- 2.3. Prolongation.- Systems of Differential Equations.- Prolongation of Group Actions.- Invariance of Differential Equations.- Prolongation of Vector Fields.- Infinitesimal Invariance.- The Prolongation Formula.- Total Derivatives.- The General Prolongation Formula.- Properties of Prolonged Vector Fields.- Characteristics of Symmetries.- 2.4. Calculation of Symmetry Groups.- 2.5. Integration of Ordinary Differential Equations.- First Order Equations.- Higher Order Equations.- Differential Invariants.- Multi-parameter Symmetry Groups.- Solvable Groups.- Systems of Ordinary Differential Equations.- 2.6. Nondegeneracy Conditions for Differential Equations.- Local Solvability.- In variance Criteria.- The Cauchy-Kovalevskaya Theorem.- Characteristics.- Normal Systems.- Prolongation of Differential Equations.- Notes.- Exercises.- 3 Group-Invariant Solutions.- 3.1. Construction of Group-Invariant Solutions.- 3.2. Examples of Group-Invariant Solutions.- 3.3. Classification of Group-Invariant Solutions.- The Adjoint Representation.- Classification of Subgroups and Subalgebras.- Classification of Group-Invariant Solutions.- 3.4. Quotient Manifolds.- Dimensional Analysis.- 3.5. Group-Invariant Prolongations and Reduction.- Extended Jet Bundles.- Differential Equations.- Group Actions.- The Invariant Jet Space.- Connection with the Quotient Manifold.- The Reduced Equation.- Local Coordinates.- Notes.- Exercises.- 4 Symmetry Groups and Conservation Laws.- 4.1. The Calculus of Variations.- The Variational Derivative.- Null Lagrangians and Divergences.- Invariance of the Euler Operator.- 4.2. Variational Symmetries.- Infinitesimal Criterion of Invariance.- Symmetries of the Euler-Lagrange Equations.- Reduction of Order.- 4.3. Conservation Laws.- Trivial Conservation Laws.- Characteristics of Conservation Laws.- 4.4. Noether's Theorem.- Divergence Symmetries.- Notes.- Exercises.- 5 Generalized Symmetries.- 5.1. Generalized Symmetries of Differential Equations.- Differential Functions.- Generalized Vector Fields.- Evolutionary Vector Fields.- Equivalence and Trivial Symmetries.- Computation of Generalized Symmetries.- Group Transformations.- Symmetries and Prolongations.- The Lie Bracket.- Evolution Equations.- 5.2. Recursion Operators, Master Symmetries and Formal Symmetries.- Frechet Derivatives.- Lie Derivatives of Differential Operators.- Criteria for Recursion Operators.- The Korteweg-de Vries Equation.- Master Symmetries.- Pseudo-differential Operators.- Formal Symmetries.- 5.3. Generalized Symmetries and Conservation Laws.- Adjoints of Differential Operators.- Characteristics of Conservation Laws.- Variational Symmetries.- Group Transformations.- Noether's Theorem.- Self-adjoint Linear Systems.- Action of Symmetries on Conservation Laws.- Abnormal Systems and Noether's Second Theorem.- Formal

저자소개

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책