logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Numerical Linear Algebra for Applications in Statistics

Numerical Linear Algebra for Applications in Statistics (Hardcover)

James E. Gentle (지은이), W. Eddy, J. Chambers (엮은이)
Springer Verlag
93,730원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
76,850원 -18% 0원
3,850원
73,000원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Numerical Linear Algebra for Applications in Statistics
eBook 미리보기

책 정보

· 제목 : Numerical Linear Algebra for Applications in Statistics (Hardcover) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 대수학 > 선형대수학
· ISBN : 9780387985428
· 쪽수 : 221쪽
· 출판일 : 1998-08-13

목차

1 Computer Storage and Manipulation of Data.- 1.1 Digital Representation of Numeric Data.- 1.2 Computer Operations on Numeric Data.- 1.3 Numerical Algorithms and Analysis.- Exercises.- 2 Basic Vector/Matrix Computations.- 2.1 Notation, Definitions, and Basic Properties.- 2.1.1 Operations on Vectors; Vector Spaces.- 2.1.2 Vectors and Matrices.- 2.1.3 Operations on Vectors and Matrices.- 2.1.4 Partitioned Matrices.- 2.1.5 Matrix Rank.- 2.1.6 Identity Matrices.- 2.1.7 Inverses.- 2.1.8 Linear Systems.- 2.1.9 Generalized Inverses.- 2.1.10 Other Special Vectors and Matrices.- 2.1.11 Eigenanalysis.- 2.1.12 Similarity Transformations.- 2.1.13 Norms.- 2.1.14 Matrix Norms.- 2.1.15 Orthogonal Transformations.- 2.1.16 Orthogonalization Transformations.- 2.1.17 Condition of Matrices.- 2.1.18 Matrix Derivatives.- 2.2 Computer Representations and Basic Operations.- 2.2.1 Computer Representation of Vectors and Matrices.- 2.2.2 Multiplication of Vectors and Matrices.- Exercises.- 3 Solution of Linear Systems.- 3.1 Gaussian Elimination.- 3.2 Matrix Factorizations.- 3.2.1 LU and LDU Factorizations.- 3.2.2 Cholesky Factorization.- 3.2.3 QR Factorization.- 3.2.4 Householder Transformations (Reflections).- 3.2.5 Givens Transformations (Rotations).- 3.2.6 Gram-Schmidt Transformations.- 3.2.7 Singular Value Factorization.- 3.2.8 Choice of Direct Methods.- 3.3 Iterative Methods.- 3.3.1 The Gauss-Seidel Method with Successive Overrelaxation.- 3.3.2 Solution of Linear Systems as an Optimization Problem; Conjugate Gradient Methods.- 3.4 Numerical Accuracy.- 3.5 Iterative Refinement.- 3.6 Updating a Solution.- 3.7 Overdetermined Systems; Least Squares.- 3.7.1 Full Rank Coefficient Matrix.- 3.7.2 Coefficient Matrix Not of Full Rank.- 3.7.3 Updating a Solution to an Overdetermined System.- 3.8 Other Computations for Linear Systems.- 3.8.1 Rank Determination.- 3.8.2 Computing the Determinant.- 3.8.3 Computing the Condition Number.- Exercises.- 4 Computation of Eigenvectors and Eigenvalues and the Singular Value Decomposition.- 4.1 Power Method.- 4.2 Jacobi Method.- 4.3 QR Method for Eigenanalysis.- 4.4 Singular Value Decomposition.- Exercises.- 5 Software for Numerical Linear Algebra.- 5.1 Fortran and C.- 5.1.1 BLAS.- 5.1.2 Fortran and C Libraries.- 5.1.3 Fortran 90 and 95.- 5.2 Interactive Systems for Array Manipulation.- 5.2.1 Matlab.- 5.2.2 S, S-Plus.- 5.3 High-Performance Software.- 5.4 Test Data.- Exercises.- 6 Applications in Statistics.- 6.1 Fitting Linear Models with Data.- 6.2 Linear Models and Least Squares.- 6.2.1 The Normal Equations and the Sweep Operator.- 6.2.2 Linear Least Squares Subject to Linear Equality Constraints.- 6.2.3 Weighted Least Squares.- 6.2.4 Updating Linear Regression Statistics.- 6.2.5 Tests of Hypotheses.- 6.2.6 D-Optimal Designs.- 6.3 Ill-Conditioning in Statistical Applications.- 6.4 Testing the Rank of a Matrix.- 6.5 Stochastic Processes.- Exercises.- Appendices.- A Notation and Definitions.- B Solutions and Hints for Selected Exercises.- Literature in Computational Statistics.- World Wide Web, News Groups, List Servers, and Bulletin Boards.- References.- Author Index.

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책