logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Astrophysics: Decoding the Cosmos

Astrophysics: Decoding the Cosmos (Hardcover)

James A. Irwin (지은이)
  |  
John Wiley & Sons Inc
2007-06-01
  |  
442,620원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
알라딘 331,960원 -25% 0원 6,640원 325,320원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
로딩중

e-Book

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

해외직구

책 이미지

Astrophysics: Decoding the Cosmos

책 정보

· 제목 : Astrophysics: Decoding the Cosmos (Hardcover) 
· 분류 : 외국도서 > 과학/수학/생태 > 과학 > 물리학 > 천체물리학
· ISBN : 9780470013052
· 쪽수 : 446쪽

목차

Preface.

Acknowledgments.

Introduction.

Appendix: dimensions, units and equations.

PART I THE SIGNAL OBSERVED.

1 Defining the signal.

1.1 The power of light - luminosity and spectral power.

1.2 Light through a surface - flux and flux density.

1.3 The brightness of light - intensity and specific intensity.

1.4 Light from all angles - energy density and mean intensity.

1.5 How light pushes - radiation pressure.

1.6 The human perception of light - magnitudes.

1.7 Light aligned - polarization.

Problems.

2 Measuring the signal.

2.1 Spectral filters and the panchromatic universe.

2.2 Catching the signal – the telescope.

2.3 The Corrupted signal – the atmosphere.

2.4 Processing the signal.

2.5 Analysing the signal.

2.6 Visualizing the signal.

Problems.

Appendix: refraction in the Earth’s atmosphere.

PART II MATTER AND RADIATION ESSENTIALS.

3 Matter essentials.

3.1 The Big Bang.

3.2 Dark and light matter.

3.3 Abundances of the elements.

3.4 The gaseous universe.

3.5 The dusty Universe.

3.6 Cosmic rays.

Problems.

Appendix: the electron/proton ratio in cosmic rays.

4 Radiation essentials.

4.1 Black body radiation.

4.2 Grey bodies and planetary temperatures.

Problems.

Appendix: derivation of the Planck function.

4.A.1 The statistical weight.

4.A.2 The mean energy per state.

4.A.3 The specific energy density and specific intensity.

PART III THE SIGNAL PERTURBED.

5 The interaction of light with matter.

5.1 The photon redirected – scattering.

5.2 The photon lost – absorption.

5.3 The wavefront redirected – refraction.

5.4 Quantifying opacity and transparency.

5.5 The opacity of dust – extinction.

Problems.

6 The signal transferred.

6.1 Types of energy transfer.

6.2 The equation of transfer.

6.3 Solutions to the equation of transfer.

6.4 Implications of the LTE solution.

Problems.

7 The interaction of light with space.

7.1 Space and time.

7.2 Redshifts and blueshifts.

7.3 Gravitational refraction.

7.4 Time variability and source size.

Problems.

PART IV THE SIGNAL EMITTED.

8 Continuum emission.

8.1 Characteristics of continuum emission – thermal and non-thermal.

8.2 Bremsstrahlung (free–free) emission.

8.3 Free–bound (recombination) emission.

8.4 Two-photon emission.

8.5 Synchrotron (and cyclotron) radiation.

8.5.4 Synchrotron sources – spurs, bubbles, jets, lobes and relics.

8.6 Inverse Compton radiation.

Problems.

9 Line emission.

9.1 The richness of the spectrum – radio waves to gamma rays.

9.2 The line strengths, thermalization, and the critical gas density.

9.3 Line broadening.

9.4 Probing physical conditions via electronic transitions.

9.5 Probing physical conditions via molecular transitions.

Problems.

PART V THE SIGNAL DECODED.

10 Forensic astronomy.

10.1 Complex spectra.

10.2 Case studies – the active, the young, and the old.

10.3 The messenger and the message.

Problems.

Appendix A: Mathematical and geometrical relations.

A.1 Taylor series.

A.2 Binomial expansion.

A.3 Exponential expansion.

A.4 Convolution.

A.5 Properties of the ellipse.

Appendix B: Astronomical geometry.

B.1 One-dimensional and two-dimensional angles.

B.2 Solid angle and the spherical coordinate system.

Appendix C: The hydrogen atom.

C.1 The hydrogen spectrum and principal quantum number.

C.2 Quantum numbers, degeneracy, and statistical weight.

C.3 Fine structure and the Zeeman effect.

C.4 The l 21 cm line of neutral hydrogen.

Appendix D: Scattering processes.

D.1 Elastic, or coherent scattering.

D.1.1 Scattering from free electrons – Thomson scattering.

D.1.2 Scattering from bound electrons I: the oscillator model.

D.1.3 Scattering from bound electrons II: quantum mechanics.

D.1.4 Scattering from bound electrons III: resonance scattering and the natural line shape.

D.1.5 Scattering from bound electrons IV: Rayleigh scattering.

D.2 Inelastic scattering – Compton scattering from free electrons.

D.3 Scattering by dust.

Appendix E: Plasmas, the plasma frequency, and plasma waves.

Appendix F: The Hubble relation and the expanding Universe.

F.1 Kinematics of the Universe.

F.2 Dynamics of the Universe.

F.3 Kinematics, dynamics and high redshifts.

Appendix G: Tables and Figures.

References.

Index.

저자소개

James A. Irwin (지은이)    정보 더보기
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책