logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Foundations of Differential Geometry, 2 Volume Set

Foundations of Differential Geometry, 2 Volume Set (Paperback)

Shoshichi Kobayashi, Katsumi Nomizu (지은이)
John Wiley & Sons Inc
513,660원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
385,240원 -25% 0원
11,560원
373,680원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Foundations of Differential Geometry, 2 Volume Set
eBook 미리보기

책 정보

· 제목 : Foundations of Differential Geometry, 2 Volume Set (Paperback) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 기하학 > 미분기하학
· ISBN : 9780470555583
· 쪽수 : 832쪽
· 출판일 : 2009-05-01

목차

VOLUME I

Interdependence of the Chapters and the Sections xi

?

Chapter I

Differentiable Manifolds

1. Differentiable manifolds 1

2. Tensor algebras 17

3. Tensor fields 26

4. Lie groups 38

5. Fibre bundles 50

?

Chapter II

Theory of Connections

1. Connections in a principle fibre bundle 63

2. Existence and extension of connections 67

3. Parallelism 68

4. Holonomy groups 71

5. Curvature for and structure equation 75

6. Mappings of connections 79

7. Reduction theorem 83

8. Holonomy theorem 89

9. Flat connections 92

10. Local and infinitesimal holonomy groups 94

11. Invariant connections 103

?

Chapter III

Linear and Affine Connections

1. Connections in a vector bundle 113

2. Linear connections 118

3. Affine connections 125

4. Developments 130

5. Curvature and torsion tensors 132

6. Geodesics 138

7. Expressions in local coordinate systems 140

8. Normal coordinates 146

9. Linear infitesimal holonomy groups 151

?

Chapter IV

Riemannian Connections

1. Riemannian metrics 154

2. Riemannian connections 158

3. Normal coordinates and convex neighborhoods 162

4. Completeness 172

5. Holonomy groups 179

6. The decomposition theorem of de Rham 187

7. Affine holonomy groups

?

Chapter V

Curvature and Space Forms

1. Algebraic preliminaries 198

2. Sectional curvature

3. Spaces of constant curvature 204

4. Flat affine and Riemannian connections 209

?

Chapter VI

Transformations

1. Affine mappings and affine transformations 225

2. Infinitesimal affine transformations 229

3. Isometries and infinitesimal isometries 236

4. Holonomy and infinitesimal isometries 244

5. Ricci tensor and infinitesimal isometries 248

6. Extension of local isomorphisms 252

7. Equivalence problem 256

?

Appendices

1. Ordinary linear differential equations 267

2. A connected, locally compact metric space is separable 269

3. Partition of unity 272

4. On an arcwise connected subgroup of a Lie group 275

5. Irreducible subgroups of O(n) 277

6. Green's theorem 281

7. Factorization lemma 284

?

Notes

1. Connections and holonomy groups 287

2. Complete affine and Riemannian connections 291

3. Ricci tensor and scalar curvature 292

4. Spaces of constant positive curvature 294

5. Flat Riemannian manifolds 297

6. Parallel displacement of curvature 300

7. Symmetric spaces 300

8. Linear connections with recurrent curvature 304

9. The automorphism group of a geometric structure 306

10. Groups of isometries and affine transformations with maximum dimensions 308

11. Conformal transformations of a Riemannian manifold 309

?

Summary of Basic Notations 313

Bibliography 315

?

Index 325

?

Errata for Foundations of Differential Geometry, Volume I 330

Errata for Foundations of Differential Geometry, Volume II 331

VOLUME II

?

Chapter VII

Submanifolds

1. Frame bundles of a submanifold 1

2. The Gauss map 6

3. Covariant differentiation and second fundamental form 10

4. Equations of Gauss and Codazzi 22

5. Hypersurfaces in a Euclidean space 29

6. Type number and rigidity 42

7. Fundamental theorem for hypersurfaces 47

8. Auto-parallel submanifolds and totally geodesic submanifolds 53

?

Chapter VIII

Variations of the Length Integral

1. Jacobi fields 63

2. Jacobi fields in a Rimannian manifold 68

3. Conjugate points 71

4. Comparison theorem 76

5. The first and second variations of the length integral 79

6. Index theorem of Morse 88

7. Cut loci 96

8. Spaces of non-positive curvature 102

9. Center of gravity and fixed points of isometries 108

?

Chapter IX

Complex Manifolds

1. Algebraic preliminaries 114

2. Almost complex manifolds and complex manifolds 121

3. Connections in almost complex manifolds 141

4. Hermitian metrics and Kaehler metrics 146

5. Kaehler metrics in local coordinate systems 155

6. Examples of Kaehler manifolds 159

7. Holomorphic sectional curvature 165

8. De Rham decomposition of Kaehler manifolds 171

9. Curvature of Kaehler submanifolds 175

10. Hermitian connections in Hermitian vector bundles 178

?

Chapter X

Homogeneous Spaces

1. Invariant affine connections 186

2. Invariant connections on reductive homogeneous spaces 190

3. Invariant indefinite Riemannian metrics 200

4. Holonomy groups of invariant connections 204

5. The de Rham decomposition and irreducibility 210

6. Invariant almost complex structures 216

?

Chapter XI

Symmetric Spaces

1. Affine locally symmetric spaces 222

2. Symmetric spaces 225

3. The canonical connection on symmetric space 230

4. Totally geodesic submanifolds 234

5. Structure of symmetric Lie algebras 238

6. Riemannian symmetric spaces 243

7. Structure of orthogonal symmetric Lie algebras 246

8. Duality 253

9. Hermitian symmetric spaces 259

10. Examples 264

11. An outline of the classification theory

?

Chapter XII

Characteristic Classes

1. Weil homomorphism 293

2. Invaraint polynomials 298

3. Chern classes 305

4. Pontrjagin classes 312

5. Euler classes 314

?

Appendices

8. Integrable real analytic almost complex structures 321

9. Some definitions and facts on Lie algebras 325

?

Notes

12. Connections and holonomy groups (Supplement to Note 1) 331

13. The automorphism group of geometric structure (Supplement to Note 9) 332

14. The Laplacian 337

15. Surafces of constant curvature in R3 343

16. Index of nullity 347

17. Type number and rigidity of imbedding 349

18. Isometric imbeddings 354

19. Equivalence problems for Riemannian manifolds 357

20. Gauss-Bonnet theorem 358

21. Total curvature 361

22. Topology of Riemannian manifolds with positive curvature 364

23. Topology of Kaehler manifolds with positive curvature 368

24. Structure theorems on homogeneous complex manifols 373

25. Invariant connections on homogeneous spaces 375

26. Complex submanifolds 378

27. Minimal submanifolds 379

28. Contact structure and related structures 381

?

Bibliography 387

?

Summary of Basic Notations 455

?

Index for Volumes I and II 459

?

Errata for Foundations of Differential Geometry, Volume I 469

Errata for Foundations of Differential Geometry, Volume II 470

?

?

?

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책