logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Applied Statistics: Analysis of Variance and Regression

Applied Statistics: Analysis of Variance and Regression (Hardcover, 3, Revised)

Virginia A. Clark, Ruth M. Mickey, Olive Jean Dunn (지은이)
John Wiley & Sons
355,780원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
291,730원 -18% 0원
14,590원
277,140원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Applied Statistics: Analysis of Variance and Regression
eBook 미리보기

책 정보

· 제목 : Applied Statistics: Analysis of Variance and Regression (Hardcover, 3, Revised) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 확률과 통계 > 일반
· ISBN : 9780471370383
· 쪽수 : 448쪽
· 출판일 : 2004-02-06

목차

Preface.

1. Data Screening.

1.1 Variables and Their Classification.

1.2 Describing the Data.

1.3 Departures from Assumptions.

1.4 Summary.

2. One-Way Analysis of Variance Design.

2.1 One-Way Analysis of Variance with Fixed Effects.

2.2 One-Way Analysis of Variance with Random Effects.

2.3 Designing an Observational Study or Experiment.

2.4 Checking if the Data Fit the One-Way ANOVA Model.

2.5 What to Do if the Data Do Not Fit the Model.

2.6 Presentation and Interpretation of Results.

2.7 Summary.

3. Estimation and Simultaneous Inference.

3.1 Estimation for Single Population Means.

3.2 Estimation for Linear Combinations of Population Means.

3.3 Simultaneous Statistical Inference.

3.4 Inference for Variance Components.

3.5 Presentation and Interpretation of Results.

3.6 Summary.

4. Hierarchical or Nested Design.

4.1 Example.

4.2 The Model.

4.3 Analysis of Variance Table and F Tests.

4.4 Estimation of Parameters.

4.5 Inferences with Unequal Sample Sizes.

4.6 Checking If the Data Fit the Model.

4.7 What to Do If the Data Don't Fit the Model.

4.8 Designing a Study.

4.9 Summary.

5. Two Crossed Factors: Fixed Effects and Equal Sample Sizes.

5.1 Example.

5.2 The Model.

5.3 Interpretation of Models and Interaction.

5.4 Analysis of Variance and F Tests.

5.5 Estimates of Parameters and Confidence Intervals.

5.6 Designing a Study.

5.7 Presentation and Interpretation of Results.

5.8 Summary.

6 Randomized Complete Block Design.

6.1 Example.

6.2 The Randomized Complete Block Design.

6.3 The Model.

6.4 Analysis of Variance Table and F Tests.

6.5 Estimation of Parameters and Confidence Intervals.

6.6 Checking If the Data Fit the Model.

6.7 What to Do if the Data Don't Fit the Model.

6.8 Designing a Randomized Complete Block Study.

6.9 Model Extensions.

6.10 Summary.

7. Two Crossed Factors: Fixed Effects and Unequal Sample Sizes.

7.1 Example.

7.2 The Model.

7.3 Analysis of Variance and F Tests.

7.4 Estimation of Parameters and Confidence Intervals.

7.5 Checking If the Data Fit the Two-Way Model.

7.6 What To Do If the Data Don't Fit the Model.

7.7 Summary.

8. Crossed Factors: Mixed Models.

8.1 Example.

8.2 The Mixed Model.

8.3 Estimation of Fixed Effects.

8.4 Analysis of Variance.

8.5 Estimation of Variance Components.

8.6 Hypothesis Testing.

8.7 Confidence Intervals for Means and Variance Components.

8.8 Comments on Available Software.

8.9 Extensions of the Mixed Model.

8.10 Summary.

9. Repeated Measures Designs.

9.1 Repeated Measures for a Single Population.

9.2 Repeated Measures with Several Populations.

9.3 Checking if the Data Fit the Repeated Measures Model.

9.4 What to Do if the Data Don't Fit the Model.

9.5 General Comments on Repeated Measures Analyses.

9.6 Summary.

10. Linear Regression: Fixed X Model.

10.1 Example.

10.2 Fitting a Straight Line.

10.3 The Fixed X Model.

10.4 Estimation of Model Parameters and Standard Errors.

10.5 Inferences for Model Parameters: Confidence Intervals.

10.6 Inference for Model Parameters: Hypothesis Testing.

10.7 Checking if the Data Fit the Regression Model.

10.8 What to Do if the Data Don't Fit the Model.

10.9 Practical Issues in Designing a Regression Study.

10.10 Comparison with One-Way ANOVA.

10.11 Summary.

11. Linear Regression: Random X Model and Correlation.

11.1 Example.

11.2 Summarizing the Relationship Between X and Y.

11.3 Inferences for the Regression of Y and X.

11.4 The Bivariate Normal Model.

11.5 Checking if the Data Fit the Random X Regression Model.

11.6 What to Do if the Data Don't Fit the Random X Model.

11.7 Summary.

12. Multiple Regression.

12.1 Example.

12.2 The Sample Regression Plane.

12.3 The Multiple Regression Model.

12.4 Parameters Standard Errors, and Confidence Intervals.

12.5 Hypothesis Testing.

12.6 Checking If the Data Fit the Multiple Regression Model.

12.7 What to Do If the Data Don't Fit the Model.

12.8 Summary.

13. Multiple and Partial Correlation.

13.1 Example.

13.2 The Sample Multiple Correlation Coefficient.

13.3 The Sample Partial Correlation Coefficient.

13.4 The Joint Distribution Model.

13.5 Inferences for the Multiple Correlation Coefficient.

13.6 Inferences for Partial Correlation Coefficients.

13.7 Checking If the Data Fit the Joint Normal Model.

13.8 What to Do If the Data Don't Fit the Model.

13.9 Summary.

14. Miscellaneous Topics in Regression.

14.1 Models with Dummy Variables.

14.2 Models with Interaction Terms.

14.3 Models with Polynomial Terms.

14.4 Variable Selection.

14.5 Summary.

15. Analysis of Covariance.

15.1 Example.

15.2 The ANCOVA Model.

15.3 Estimation of Model Parameters.

15.4 Hypothesis Tests.

15.5 Adjusted Means.

15.6 Checking If the Data Fit the ANCOVA Model.

15.7 What to Do if the Data Don't Fit the Model.

15.8 ANCOVA in Observational Studies.

15.9 What Makes a Good Covariate.

15.10 Measurement Error.

15.11 ANCOVA versus Other Methods of Adjustment.

15.12 Comments on Statistical Software.

15.13 Summary.

16. Summaries, Extensions, and Communication.

16.1 Summaries and Extensions of Models.

16.2 Communication of Statistics in the Context of Research Project.

Appendix A.

A.1 Expected Values and Parameters.

A.2 Linear Combinations of Variables and Their Parameters.

A.3 Balanced One-Way ANOVA, Expected Mean Squares.

A.4 Balanced One-Way ANOVA, Random Effects.

A.5 Balanced Nested Model.

A.6 Mixed Model.

A.7 Simple Linear Regression—Derivation of Least Squares Estimators.

A.8 Derivation of Variance Estimates from Simple Linear Regression.

Appendix B.

Index.

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책