logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Introductory Physics with Algebra as a Second Language: Mastering Problem-Solving

Introductory Physics with Algebra as a Second Language: Mastering Problem-Solving (Paperback)

Stuart E. Loucks (지은이)
  |  
John Wiley & Sons Inc
2006-08-01
  |  
111,110원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
알라딘 91,110원 -18% 0원 4,560원 86,550원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
로딩중

e-Book

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

해외직구

책 이미지

Introductory Physics with Algebra as a Second Language: Mastering Problem-Solving

책 정보

· 제목 : Introductory Physics with Algebra as a Second Language: Mastering Problem-Solving (Paperback) 
· 분류 : 외국도서 > 과학/수학/생태 > 과학 > 물리학 > 일반
· ISBN : 9780471762508
· 쪽수 : 288쪽

목차

CHAPTER 1. THE BOTTOM LINE FOR SOLVING PHYSICS PROBLEMS .

CHAPTER 2. LINEAR VELOCITY AND ACCELERATION .

2.1 Linear Motion Equations.

2.2 The Idea Behind How to Use Motion Equations.

2.3 Constant/Average Speed or Velocity Problems.

2.4 Constant/Average Speed or Velocity—Two Intervals, Same Direction.

2.5 Constant/Average Speed or Velocity—Two Intervals, Direction Change.

2.6 Constant/Average Speed or Velocity—Two Objects.

2.7 How to Set Up Constant/Average Speed or Velocity Problems.

2.8 Constant/Average Acceleration Problems.

2.9 Constant/Average Acceleration—One Interval.

2.10 Constant/Average Acceleration—Multiple Intervals.

2.11 Constant/Average Acceleration—“Free-Fall”.

2.12 Constant/Average Acceleration—Two Objects.

2.13 How to Set Up Constant/Average Acceleration Problems.

CHAPTER 3.   VECTORS.

3.1 Magnitude and Direction, and x- and y-Components.

3.2 Vectors along One Axis.

3.3 Vector Addition.

3.4 How to Set Up Vector Problems.

3.5 “Back Where You Started”—When Vectors Add to Zero.

3.6 Subtracting Vectors, OR, When One of the Added Vectors Is Unknown.

CHAPTER 4.   PROJECTILE MOTION.

4.1 Projectile Motion: Combining Three Basic Concepts.

4.2 When Initial Velocity Is Horizontal.

4.3 How to Set Up Projectile Motion Problems.

4.4 When Final Velocity Is Horizontal (at Maximum Height).

4.5 When Initial and Final Heights Are Equal.

4.6 When Both Initial and Final Velocities Are at Angles.

CHAPTER 5.   FORCE AND NEWTON’S LAWS OF MOTION.

5.1 How to Draw a Free-Body Diagram (FBD).

5.2 Forces in 1D.

5.3 How to Set Up Force Problems.

5.4 Motion Intervals in Force Problems.

5.5 Objects Connected by Strings, Ropes, and so on.

5.6 Forces in 2D.

5.7 Sliding—Kinetic Friction.

5.8 “Just about to Slip”—Maximum Static Friction.

5.9 Inclines or Ramps.

5.10 Objects Pushing on Each Other.

CHAPTER 6.   CIRCULAR MOTION AND CENTRIPETAL FORCE.

6.1 Tangential Speed and Centripetal Acceleration.

6.2 Comparing Circular Motion at Two Different Radii.

6.3 Comparing Circular Motion at Two Different Speeds.

6.4 How to Set Up Circular Motion Comparison Problems.

6.5 How to Think about Centripetal Force Problems.

6.6 Circular Motion with a Horizontal String.

6.7 How to Set Up Centripetal Force Problems.

6.8 Circular Motion with a String at an Angle.

6.9 Circular Motion on an Unbanked Road with Friction.

6.10 Circular Motion on a Banked Road without Friction.

6.11 Vertical Circular Motion—Lowest Point.

6.12 Vertical Circular Motion—Highest Point, Upside-Down.

6.13 Vertical Circular Motion—Highest Point, Right-Side-Up.

CHAPTER 7.   GRAVITATION AND ORBITS.

7.1 Weight and g at a Planet’s Surface.

7.2 Adding Gravitational Force Vectors.

7.3 Circular Orbit Problems.

7.4 Circular Orbit Equations.

7.5 Comparing Orbits at Two Different Radii.

CHAPTER 8.   WORK AND ENERGY.

8.1 Work Done by a Constant/Average Force.

8.2 Work Problems—with Two or More Forces.

8.3 Work Problems—when Forces Are Not Given.

8.4 How to Set Up Work Problems.

8.5 The Work-Energy Theorem—KE Only.

8.6 How to Set Up Work-Energy Problems—KE only.

8.7 Potential Energy, Conservative and Nonconservative Forces.

8.8 The Work-Energy Theorem—KE and PE.

8.9 How to Set Up Work-Energy Problems—KE and PE.

8.10 Conservation of Energy—When Wnc 0.

8.11 How to Set Up Conservation of Energy Problems.

8.12 How to Split Up a Difficult Problem.

CHAPTER 9.   IMPULSE, MOMENTUM, AND CENTER OF MASS.

9.1 The Impulse-Momentum Theorem.

9.2 1D Impulse and Momentum.

9.3 2D Impulse and Momentum.

9.4 How to Set Up Impulse and Momentum Problems.

9.5 Conservation of Momentum.

9.6 1D Collisions—Objects Coming Together.

9.7 1D Explosions—Objects Pushing Apart.

9.8 1D Elastic Collisions.

9.9 2D Collisions.

9.10 How to Set Up Conservation of Momentum Problems.

9.11 Center of Mass.

9.12 1D Center of Mass.

9.13 2D Center of Mass.

9.14 How to Set Up Center of Mass Problems.

CHAPTER 10.   ANGULAR VELOCITY AND ACCELERATION.

10.1 How to Relate Angular and Tangential or Linear Quantities.

10.2 Two-Object, Two-Circle Problems.

10.3 How to Set Up Two-Object, Two-Circle Problems.

10.4 Constant/Average Angular Velocity.

10.5 How to Set Up Constant/Average Angular Velocity Problems.

10.6 Constant/Average Angular Acceleration.

10.7 Constant/Average Angular Acceleration—Multiple Intervals.

10.8 Constant/Average Angular Acceleration—with Tangential or Linear Acceleration.

10.9 Constant/Average Angular Acceleration—with Centripetal Acceleration.

10.10 Summary of Angular Velocity and Acceleration Equations.

10.11 How to Set Up Constant/Average Angular Acceleration Problems.

CHAPTER 11.   TORQUE AND EQUILIBRIUM.

11.1 Torque.

11.2 How to Set Up Torque Problems.

11.3 Equilibrium for “Rigid” Bodies.

11.4 Equilibrium—With Only 90 Angles.

11.5 Equilibrium—With Non-90 Angles.

11.6 How to Set Up Equilibrium Problems.

CHAPTER 12. MORE ANGULAR MOTION.

12.1 Moment of Inertia.

12.2 Torque and Angular Acceleration Problems.

12.3 How to Set Up Torque and Angular Acceleration Problems.

12.4 Rotational Kinetic Energy and Conservation of Energy.

12.5 Conservation of Angular Momentum.

12.6 Conservation of Angular Momentum Problems—First Type.

12.7 Conservation of Angular Momentum Problems—Second Type.

12.8 How to Set Up Conservation of Angular Momentum Problems.

INDEX .

저자소개

Stuart E. Loucks (지은이)    정보 더보기
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책