책 이미지

책 정보
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 응용수학
· ISBN : 9780817683399
· 쪽수 : 282쪽
· 출판일 : 2012-05-24
목차
Part I. Basic concepts.- The simplest examples.- The classes Sigma^ I .- The quadratic differential of a map.- The local algebra of a map and the Weierstrass preparation theorem.- The local multiplicity of a holomorphic map.- Stability and infinitesimal stability.- The proof of the stability theorem.- Versal deformations.- The classification of stable germs by genotype.- Review of further results.- Part II. Critical points of smooth functions.- A start to the classification of critical points.- Quasihomogeneous and semiquasihomogeneous singularities.- The classification of quasihomogeneous functions.- Spectral sequences for the reduction to normal forms.- Lists of singularities.- The determinator of singularities.- Real, symmetric and boundary singularities.- Part III. Singularities of caustics and wave fronts.- Lagrangian singularities.- Generating families.- Legendrian singularities.- The classification of Lagrangian and Legendrian singularities.- The bifurcation of caustics and wave fronts.- References.- Further references.- Subject Index.