책 이미지

책 정보
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 기하학 > 대수기하학
· ISBN : 9781119405108
· 쪽수 : 368쪽
· 출판일 : 2019-01-07
목차
Contents
Preface vii
Acknowledgements ix
1 Introduction 1
1.1 Motivation 1
1.2 The 3D shape analysis problem 2
1.3 About this book 5
1.4 Notation 7
Part I Foundations 11
2 Basic elements of 3D geometry and topology 13
2.1 Elements of differential geometry 13
2.1.1 Parametric curves 13
2.1.2 Continuous surfaces 15
2.1.3 Manifolds, metrics, and geodesics 21
2.1.4 Discrete surfaces 23
2.2 Shape, shape transformations and deformations 29
2.2.1 Shape-preserving transformations 29
2.2.2 Shape deformations 33
2.2.3 Bending 34
2.2.4 Stretching 35
2.3 Summary and further reading 36
3 3D acquisition and pre-processing 39
3.1 Introduction 39
3.2 3D acquisition 39
3.2.1 Contact 3D acquisition 41
3.2.2 Non-contact 3D acquisition 42
3.3 Pre-processing 3D models 52
3.3.1 Surface smoothing and fairing 53
3.3.2 Spherical parameterization of 3D surfaces 55
3.4 Summary and further reading 58
Part II 3D Shape Descriptors 61
4 Global shape descriptors 63
4.1 Introduction 63
4.2 Distribution-based descriptors 65
4.2.1 Point sampling 65
4.2.2 Geometric features 66
4.2.3 Signature construction and comparison 67
4.3 View-based 3D shape descriptors 69
4.3.1 The Light Field Descriptors (LFD) 70
4.3.2 Feature extraction 71
4.3.3 Properties 72
4.4 Spherical function-based descriptors 72
4.4.1 Spherical shape functions 74
4.4.2 Comparing spherical functions 75
4.5 Deep Neural Network-based 3D descriptors 78
4.5.1 CNN-based image descriptors 79
4.5.2 Multiview CNN for 3D shapes 81
4.5.3 Volumetric CNN 82
4.6 Summary and further reading 84
5 Local shape descriptors 87
5.1 Introduction 87
5.2 Challenges and criteria 88
5.2.1 Challenges 88
5.2.2 Criteria for 3D keypoint detection 89
5.2.3 Criteria for local feature description 89
5.3 3D keypoint detection 90
5.3.1 Fixed-scale keypoint detection 91
5.3.2 Adaptive-scale keypoint detection 94
5.4 Local feature description 105
5.4.1 Signature based methods 106
5.4.2 Histogram based methods 108
5.4.3 Covariance based methods 116
5.5 Feature aggregation using Bag of Feature techniques 117
5.5.1 Dictionary construction 118
5.5.2 Coding and pooling schemes 119
5.5.3 Vector of locally aggregated descriptors (VLAD) 120
5.5.4 Vector of Locally Aggregated Tensors (VLAT) 121
5.6 Summary and further reading 122
5.6.1 Summary of 3D keypoint detection 122
5.6.2 Summary of local feature description 123
5.6.3 Summary of feature aggregation 124
Part III 3D Correspondence and Registration 127
6 Rigid registration 129
6.1 Introduction 129
6.2 Coarse registration 130
6.2.1 Point correspondence-based registration 130
6.2.2 Line based registration 134
6.2.3 Surface based registration 137
6.3 Fine registration 143
6.3.1 Iterative Closest Point (ICP) 143
6.3.2 ICP variants 146
6.3.3 Coherent point drift 148
6.4 Summary and further reading 150
7 Nonrigid Registration 153
7.1 Introduction 153
7.2 Problem formulation 154
7.3 Mathematical tools 157
7.3.1 The space of diffeomorphisms 157
7.3.2 Parameterizing spaces 158
7.4 Isometric correspondence and registration 160
7.4.1 Möbius voting 160
7.4.2 Examples 161
7.5 Non-isometric (elastic) correspondence and registration 162
7.5.1 Surface deformation models 163
7.5.2 Square-Root Normal Fields (SRNF) representation 164
7.5.3 Numerical inversion of SRNF maps 166
7.5.4 Correspondence 168
7.5.5 Elastic registration and geodesics 172
7.5.6 Co-registration 174
7.6 Summary and further reading 176
8 Semantic correspondences 179
8.1 Introduction 179
8.2 Mathematical formulation 180
8.3 Graph representation 182
8.3.1 Characterizing the local geometry and the spatial relations 183
8.3.2 Cross mesh pairing of patches 184
8.4 Energy functions for semantic labelling 185
8.4.1 The data term 186
8.4.2 Smoothness terms 186
8.4.3 The inter-mesh term 188
8.5 Semantic labelling 188
8.5.1 Unsupervised clustering 188
8.5.2 Learning the labelling likelihood 190
8.5.3 Learning the remaining parameters 192
8.5.4 Optimization using Graph Cuts 193
8.6 Examples 194
8.7 Summary and further reading 196
Part IV Applications 199
9 Examples of 3D semantic applications 201
9.1 Introduction 201
9.2 Semantics: Shape or Status 201
9.3 Semantics: Class or Identity 204
9.4 Semantics: Behavior 207
9.5 Semantics: Position 210
9.6 Summary and further reading 212
10 3D face recognition 213
10.1 Introduction 213
10.2 3D face recognition tasks, challenges and datasets 213
10.2.1 3D face recognition challenges 215
10.2.2 3D face datasets 217
10.3 3D face recognition methods 218
10.3.1 Holistic approaches 220
10.3.2 Local feature-based matching 223
10.4 Summary 227
11 Object recognition in 3D scenes 229
11.1 Introduction 229
11.2 Surface registration-based object recognition methods 229
11.2.1 Feature matching 230
11.2.2 Hypothesis generation 230
11.2.3 Hypothesis verification 236
11.3 Machine learning-based object recognition methods 242
11.3.1 Hough forest-based 3D object detection 242
11.3.2 Deep learning-based 3D object recognition 246
11.4 Summary and further reading 250
12 3D shape retrieval 253
12.1 Introduction 253
12.2 Benchmarks and evaluation criteria 255
12.2.1 3D datasets and benchmarks 256
12.2.2 Performance evaluation metrics 257
12.3 Similarity measures 260
12.3.1 Dissimilarity measures 261
12.3.2 Hashing and Hamming distance 261
12.3.3 Manifold ranking 263
12.4 3D shape retrieval algorithms 265
12.4.1 Using handcrafted features 265
12.4.2 Deep Learning-based methods 267
12.5 Summary and further reading 268
13 Cross-domain retrieval 271
13.1 Introduction 271
13.2 Challenges and datasets 273
13.2.1 Datasets 274
13.2.2 Training data synthesis 275
13.3 Siamese network for cross-domain retrieval 276
13.4 3D shape-centric deep CNN 278
13.4.1 embedding space construction 279
13.4.2 Learning shapes from synthesized data 282
13.4.3 Image and sketch projection 283
13.5 Summary and further reading 285
14 Conclusions and perspectives 287