logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

[eBook Code] Fundamental Statistical Inference

[eBook Code] Fundamental Statistical Inference (eBook Code, 1st)

(A Computational Approach)

Marc S. Paolella (지은이)
Wiley
180,960원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
144,760원 -20% 0원
0원
144,760원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

[eBook Code] Fundamental Statistical Inference
eBook 미리보기

책 정보

· 제목 : [eBook Code] Fundamental Statistical Inference (eBook Code, 1st) (A Computational Approach)
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 확률과 통계 > 일반
· ISBN : 9781119417880
· 쪽수 : 584쪽
· 출판일 : 2018-06-19

목차

Preface xi

PART I ESSENTIAL CONCEPTS IN STATISTICS

1 Introducing Point and Interval Estimation 3

1.1 Point Estimation / 4

1.1.1 Bernoulli Model / 4

1.1.2 Geometric Model / 6

1.1.3 Some Remarks on Bias and Consistency / 11

1.2 Interval Estimation via Simulation / 12

1.3 Interval Estimation via the Bootstrap / 18

1.3.1 Computation and Comparison with Parametric Bootstrap / 18

1.3.2 Application to Bernoulli Model and Modification / 20

1.3.3 Double Bootstrap / 24

1.3.4 Double Bootstrap with Analytic Inner Loop / 26

1.4 Bootstrap Confidence Intervals in the Geometric Model / 31

1.5 Problems / 35

2 Goodness of Fit and Hypothesis Testing 37

2.1 Empirical Cumulative Distribution Function / 38

2.1.1 The Glivenko–Cantelli Theorem / 38

2.1.2 Proofs of the Glivenko–Cantelli Theorem / 41

2.1.3 Example with Continuous Data and Approximate Confidence Intervals / 45

2.1.4 Example with Discrete Data and Approximate Confidence Intervals / 49

2.2 Comparing Parametric and Nonparametric Methods / 52

2.3 Kolmogorov–Smirnov Distance and Hypothesis Testing / 57

2.3.1 The Kolmogorov–Smirnov and Anderson–Darling Statistics / 57

2.3.2 Significance and Hypothesis Testing / 59

2.3.3 Small-Sample Correction / 63

2.4 Testing Normality with KD and AD / 65

2.5 Testing Normality with W2 and U2 / 68

2.6 Testing the Stable Paretian Distributional Assumption: First Attempt / 69

2.7 Two-Sample Kolmogorov Test / 73

2.8 More on (Moron?) Hypothesis Testing / 74

2.8.1 Explanation / 75

2.8.2 Misuse of Hypothesis Testing / 77

2.8.3 Use and Misuse of p-Values / 79

2.9 Problems / 82

3 Likelihood 85

3.1 Introduction / 85

3.1.1 Scalar Parameter Case / 87

3.1.2 Vector Parameter Case / 92

3.1.3 Robustness and the MCD Estimator / 100

3.1.4 Asymptotic Properties of the Maximum Likelihood Estimator / 102

3.2 Cramér–Rao Lower Bound / 107

3.2.1 Univariate Case / 108

3.2.2 Multivariate Case / 111

3.3 Model Selection / 114

3.3.1 Model Misspecification / 114

3.3.2 The Likelihood Ratio Statistic / 117

3.3.3 Use of Information Criteria / 119

3.4 Problems / 120

4 Numerical Optimization 123

4.1 Root Finding / 123

4.1.1 One Parameter / 124

4.1.2 Several Parameters / 131

4.2 Approximating the Distribution of the Maximum Likelihood Estimator / 135

4.3 General Numerical Likelihood Maximization / 136

4.3.1 Newton–Raphson and Quasi-Newton Methods / 137

4.3.2 Imposing Parameter Restrictions / 140

4.4 Evolutionary Algorithms / 145

4.4.1 Differential Evolution / 146

4.4.2 Covariance Matrix Adaption Evolutionary Strategy / 149

4.5 Problems / 155

5 Methods of Point Estimation 157

5.1 Univariate Mixed Normal Distribution / 157

5.1.1 Introduction / 157

5.1.2 Simulation of Univariate Mixtures / 160

5.1.3 Direct Likelihood Maximization / 161

5.1.4 Use of the EM Algorithm / 169

5.1.5 Shrinkage-Type Estimation / 174

5.1.6 Quasi-Bayesian Estimation / 176

5.1.7 Confidence Intervals / 178

5.2 Alternative Point Estimation Methodologies / 184

5.2.1 Method of Moments Estimator / 185

5.2.2 Use of Goodness-of-Fit Measures / 190

5.2.3 Quantile Least Squares / 191

5.2.4 Pearson Minimum Chi-Square / 193

5.2.5 Empirical Moment Generating Function Estimator / 195

5.2.6 Empirical Characteristic Function Estimator / 198

5.3 Comparison of Methods / 199

5.4 A Primer on Shrinkage Estimation / 200

5.5 Problems / 202

PART II FURTHER FUNDAMENTAL CONCEPTS IN STATISTICS

6 Q-Q Plots and Distribution Testing 209

6.1 P-P Plots and Q-Q Plots / 209

6.2 Null Bands / 211

6.2.1 Definition and Motivation / 211

6.2.2 Pointwise Null Bands via Simulation / 212

6.2.3 Asymptotic Approximation of Pointwise Null Bands / 213

6.2.4 Mapping Pointwise and Simultaneous Significance Levels / 215

6.3 Q-Q Test / 217

6.4 Further P-P and Q-Q Type Plots / 219

6.4.1 (Horizontal) Stabilized P-P Plots / 219

6.4.2 Modified S-P Plots / 220

6.4.3 MSP Test for Normality / 224

6.4.4 Modified Percentile (Fowlkes-MP) Plots / 228

6.5 Further Tests for Composite Normality / 231

6.5.1 Motivation / 232

6.5.2 Jarque–Bera Test / 234

6.5.3 Three Powerful (and More Recent) Normality Tests / 237

6.5.4 Testing Goodness of Fit via Binning: Pearson’s X P2 Test / 240

6.6 Combining Tests and Power Envelopes / 247

6.6.1 Combining Tests / 248

6.6.2 Power Comparisons for Testing Composite Normality / 252

6.6.3 Most Powerful Tests and Power Envelopes / 252

6.7 Details of a Failed Attempt / 255

6.8 Problems / 260

7 Unbiased Point Estimation and Bias Reduction 269

7.1 Sufficiency / 269

7.1.1 Introduction / 269

7.1.2 Factorization / 272

7.1.3 Minimal Sufficiency / 276

7.1.4 The Rao–Blackwell Theorem / 283

7.2 Completeness and the Uniformly Minimum Variance Unbiased Estimator / 286

7.3 An Example with i.i.d. Geometric Data / 289

7.4 Methods of Bias Reduction / 293

7.4.1 The Bias-Function Approach / 293

7.4.2 Median-Unbiased Estimation / 296

7.4.3 Mode-Adjusted Estimator / 297

7.4.4 The Jackknife / 302

7.5 Problems / 305

8 Analytic Interval Estimation 313

8.1 Definitions / 313

8.2 Pivotal Method / 315

8.2.1 Exact Pivots / 315

8.2.2 Asymptotic Pivots / 318

8.3 Intervals Associated with Normal Samples / 319

8.3.1 Single Sample / 319

8.3.2 Paired Sample / 320

8.3.3 Two Independent Samples / 322

8.3.4 Welch’s Method for 𝜇1 − 𝜇2 when 𝜎12 ≠ 𝜎22 / 323

8.3.5 Satterthwaite’s Approximation / 324

8.4 Cumulative Distribution Function Inversion / 326

8.4.1 Continuous Case / 326

8.4.2 Discrete Case / 330

8.5 Application of the Nonparametric Bootstrap / 334

8.6 Problems / 337

PART III ADDITIONAL TOPICS

9 Inference in a Heavy-Tailed Context 341

9.1 Estimating the Maximally Existing Moment / 342

9.2 A Primer on Tail Estimation / 346

9.2.1 Introduction / 346

9.2.2 The Hill Estimator / 346

9.2.3 Use with Stable Paretian Data / 349

9.3 Noncentral Student’s t Estimation / 351

9.3.1 Introduction / 351

9.3.2 Direct Density Approximation / 352

9.3.3 Quantile-Based Table Lookup Estimation / 353

9.3.4 Comparison of NCT Estimators / 354

9.4 Asymmetric Stable Paretian Estimation / 358

9.4.1 Introduction / 358

9.4.2 The Hint Estimator / 359

9.4.3 Maximum Likelihood Estimation / 360

9.4.4 The McCulloch Estimator / 361

9.4.5 The Empirical Characteristic Function Estimator / 364

9.4.6 Testing for Symmetry in the Stable Model / 366

9.5 Testing the Stable Paretian Distribution / 368

9.5.1 Test Based on the Empirical Characteristic Function / 368

9.5.2 Summability Test and Modification / 371

9.5.3 ALHADI: The 𝛼-Hat Discrepancy Test / 375

9.5.4 Joint Test Procedure / 383

9.5.5 Likelihood Ratio Tests / 384

9.5.6 Size and Power of the Symmetric Stable Tests / 385

9.5.7 Extension to Testing the Asymmetric Stable Paretian Case / 395

10 The Method of Indirect Inference 401

10.1 Introduction / 401

10.2 Application to the Laplace Distribution / 403

10.3 Application to Randomized Response / 403

10.3.1 Introduction / 403

10.3.2 Estimation via Indirect Inference / 406

10.4 Application to the Stable Paretian Distribution / 409

10.5 Problems / 416

A Review of Fundamental Concepts in Probability Theory 419

A.1 Combinatorics and Special Functions / 420

A.2 Basic Probability and Conditioning / 423

A.3 Univariate Random Variables / 424

A.4 Multivariate Random Variables / 427

A.5 Continuous Univariate Random Variables / 430

A.6 Conditional Random Variables / 432

A.7 Generating Functions and Inversion Formulas / 434

A.8 Value at Risk and Expected Shortfall / 437

A.9 Jacobian Transformations / 451

A.10 Sums and Other Functions / 453

A.11 Saddlepoint Approximations / 456

A.12 Order Statistics / 460

A.13 The Multivariate Normal Distribution / 462

A.14 Noncentral Distributions / 465

A.15 Inequalities and Convergence / 467

A.15.1 Inequalities for Random Variables / 467

A.15.2 Convergence of Sequences of Sets / 469

A.15.3 Convergence of Sequences of Random Variables / 473

A.16 The Stable Paretian Distribution / 483

A.17 Problems / 492

A.18 Solutions / 509

References 537

Index 561

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책