logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Essentials of Chemical Biology: Structures and Dynamics of Biological Macromolecules in Vitro and in Vivo

Essentials of Chemical Biology: Structures and Dynamics of Biological Macromolecules in Vitro and in Vivo (Paperback, 2)

MILLER (지은이)
John Wiley and Sons Ltd
64,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
64,000원 -0% 0원
1,920원
62,080원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Essentials of Chemical Biology: Structures and Dynamics of Biological Macromolecules in Vitro and in Vivo
eBook 미리보기

책 정보

· 제목 : Essentials of Chemical Biology: Structures and Dynamics of Biological Macromolecules in Vitro and in Vivo (Paperback, 2) 
· 분류 : 외국도서 > 과학/수학/생태 > 과학 > 생명과학 > 세포 생물학
· ISBN : 9781119437970
· 쪽수 : 560쪽
· 출판일 : 2024-01-31

목차

Table of Contents 

 

0.1      Mapping the Essentials of Chemical Biology 

 

Chapter 1 - The Structures of Biological Macromolecules and Lipid Assemblies 

 

1.1      General Introduction 

 

1.2      Protein Structures  

  1. Primary Structure  
  2. Repetitive Secondary Structure  
  3. Non-repetitive Secondary Structure 
  4. Alternative Secondary Structures 
  5. Tertiary Structure 
  6. Quaternary Structures 
  7. Prosthetic Groups 

 

3. Carbohydrate Structures 

  1. Primary Structure 
  2. O-Glycosidic Link 
  3. Polysaccharides; Secondary, Tertiary and Quaternary Structures 

 

4. Nucleic Acid Structures 

  1. Primary Structures of DNA and RNA 
  2. Phosphodiester Link 
  3. Secondary Structure of DNA 
    1. B-Form DNA 
    2. A-Form and Z-Form DNA 
  4. Supercoiling and Tertiary Structures of DNA 
  5. Secondary and Tertiary Structures of RNA 
  6. The Genetic Code and Structure 

 

  1. Macromolecular Lipid Assemblies 
  2. Monomeric Lipid Structures 
  3. Lyotropic Mesophases of Phospholipids 
  4. Solid-like Mesophases 
  5. Fluid Mesophases 

 

1.6       Structural Forces in Biological Macromolecules 

  1. Electrostatic Forces 
    1. Monopoles 
    2. Dipoles 
  2. Van der Waals and Dispersion Forces 
    1. Weak Dipole-Weak Dipole Interactions 
    2. Induced Dipole-Weak Dipole Interactions 
    3. Induced Dipole-Induced Dipole Interactions 
  3. Hydrogen Bonding 
  4. Hydrophobic Interactions 
  5. Other Forces 

 

Chapter 2 – Chemical and Biological Synthesis 

  

2.1 Introduction to Synthesis in Chemical Biology 

  

2.2 Chemical Synthesis of Peptides and Proteins  

2.2.1 Basic Principles – Peptide Synthesis 

2.2.2 Solid Phase Peptide Synthesis (SPPS) 

2.2.2.1 Solid Supports and Linkers for SPPS 

2.2.2.2 Coupling Protected Amino Acids in SPPS 

2.2.2.3 Protection/Deprotection Strategies in SPPS 

2.2.3 Chemical Synthesis of Polypeptides 

2.2.4 Chemical Synthesis of Peptide Nucleic Acids  

 

2.3 Chemical Synthesis of Nucleic Acids 

2.3.1 Chemical Synthesis of Oligodeoxynucleotides 

2.3.2 Chemical Synthesis of Oligonucleotides 

2.3.3 Useful Deoxynucleotide/Nucleotide Modifications    

 

2.4 Chemical Synthesis of Oligosaccharides 

2.4.1 Protecting Groups  

2.4.2 Creating Glycosidic Links 

2.4.3 Solid Phase Oligosaccharide Synthesis 

 

2.5 Chemical Synthesis of Lipids 

 

2.6 Biological Synthesis of Biological Macromolecules 

2.6.1 Ion Exchange Chromatography 

2.6.2 Hydrophobic Interaction Chromatography 

2.6.3 Reversed-Phase Chromatography 

2.6.4 Gel Filtration Chromatography 

2.6.5 Hydroxyapatite Chromatography 

 

2.7 Directed Biological Synthesis of Proteins 

2.7.1 Wild-type or Recombinant Sources 

2.7.2 Expression in E. coli; Early Purification 

2.7.3 Affinity Chromatography  

2.7.3.1 Immobilised Metal Affinity Chromatography 

2.7.3.2 Glutathione-S-Transferase Tags  

2.7.3.3 Maltose Binding Protein Tags 

2.7.3.4 Biotinylation of Proteins 

2.7.3.5 Intein Tags 

2.7.3.6 Other Affinity Tags and Radiolabelling of Proteins 

 

2.8 Biological Syntheses of Nucleic Acids, Oligosaccharides and Lipids 

2.8.1 Biological Synthesis of Nucleic Acids 

2.8.2 Biological Synthesis of Oligosaccharides  

2.8.3 Biological Synthesis of Lipids 

 

 

Chapter 3 Molecular Biology as a Toolset for Chemical Biology 

 

3.1 Key Concepts in Molecular Biology  

3.1.1 The Central Dogma of Molecular Biology 

3.1.2 The Difference between Prokaryotic and Eukaryotic Genes 

3.1.3 The Creation of cDNA Libraries 

 

3.2 Tools and Techniques in Molecular Biology  

3.2.1 Plasmid DNA Vectors 

3.2.2 Restriction Enzymes          

3.2.3 DNA Ligases 

3.2.4 Hosts 

3.2.5 Cellular Transformation 

3.2.6 Selection 

3.2.7 pDNA Purification 

3.2.8 Nucleic Acid Electrophoresis 

3.2.9 DNA Sequencing 

 

3.3 Cloning and Identification of Genes in DNA 

3.3.1 Direct DNA Cloning 

3.3.2 Polymerase Chain Reaction 

3.3.3 Gene Expression and Expression Vectors 

3.3.3.1 Expression Vectors 

3.3.3.2 Protein Expression Strategy 

3.3.3.3 Cloning for RNA Synthesis 

 

3.4 Integrating Cloning and Expression  

3.4.1 Designing Forward and Reverse Primers 

3.4.2 PCR Amplification and Product Isolation 

3.4.3 Ligation and Transformation 

3.4.4 Validation and Sequencing 

3.4.5 Protein Expression 

3.4.6 Cloning and Expressing from Eukaryotic Genes 

 

3.5 Site Directed Mutagenesis 

3.5.1 PCR-based Approaches to Mutagenesis 

3.5.2 Non-PCR-based Approaches to Mutagenesis 

 

 

Chapter 4 – Electronic and Vibrational Spectroscopy 

 

4.1 Electronic and Vibrational Spectroscopy in Chemical Biology 

 

4.2 UV-Visible Spectroscopy  

4.2.1 Transition Dipole Moments  

4.2.2 UV-Visible Spectroscopy of Proteins  

4.2.3 UV-Visible Spectroscopy of Nucleic Acids  

4.2.4 Structural vs Functional Information from UV-Visible Spectroscopy 

 

4.3 Circular Dichroism Spectroscopy 

4.3.1 Circularly Polarised Light 

4.3.2 Optical Activity and Circular Dichroism 

4.3.3 The Circular Dichroism Spectrum 

4.3.4 Structural vs Functional Information from Circular Dichroism Spectroscopy 

 

4.4 Vibrational Spectroscopy 

4.4.1 Infra-Red Vibrational Modes 

4.4.2 Structural Information from Infra-Red Spectroscopy 

4.4.3 Raman Spectroscopy 

 

4.5 Fluorescence Spectroscopy 

4.5.1 Rates of Emission and Lifetimes 

4.5.2 Effects of Non-Radiative Competition Processes 

4.5.3 Structural vs Functional Information from Fluorescence Spectroscopy 

4.5.4 Extrinsic Fluorescence and FRET 

4.5.5 Probing Biological Macromolecule Functions with Extrinsic Fluorescence 

4.5.5.1 Chemical Conjugation of Extrinsic Fluorescent Probes 

4.5.5.2 Biological Conjugation of Extrinsic Fluorescent Probes 

4.5.5.3 Selecting Extrinsic Fluorescent Probes 

4.5.6 Fluorescence Single Molecule Spectroscopy (SMS) 

 

4.6 Probing Metal Centres in Biological Systems by Spectroscopy 

 

 

  

Chapter 5 - Magnetic Resonance 

 

5.1             Magnetic Resonance in Chemical Biology 

 

5.2          Key Principles of NMR 

5.2.1 Spin Angular Momentum 

5.2.2 Magnetic Moment 

5.2.3 Quantum Mechanical Description of NMR 

5.2.4 Chemical Shift and Coupling 

5.2.4.1 Chemical Shift 

5.2.4.2 Spin-Spin Coupling 

5.2.5 Vector Description of NMR  

5.2.6 Spin-Lattice and Spin-Spin Relaxation 

5.2.7 Nuclear Overhauser Effect  

 

5.3          Two-dimensional NMR  

5.3.1 Homonuclear 2-D COSY and TOCSY Experiments 

5.3.2 Heteronuclear Correlation Experiments 

5.3.3 NOESY Experiments  

 

5.4         Multi-dimensional NMR 

5.4.1 Basic Principles of 3D Experiments  

5.4.2 Correlation Experiments 

5.4.3 Basic Principles of 4D Experiments 

 

5.5         Biological Macromolecule Structural Information  

5.5.1 Analysing Protein Structures 

5.5.1.1 3-D COSY and TOCSY Experiments of Proteins 

5.5.1.2 3-D HNCA Experiment of Proteins 

5.5.1.3 3D- and 4D-NOESY Experiments of Proteins 

5.5.1.4 Energy Minimisations 

5.5.1.5 Techniques for Overcoming the Molecular Weight Limit 

5.5.2 Analysing Nucleic Acid Structures 

5.5.3 Analysing Carbohydrate Structures 

5.5.4 Analysing Lipid Assembly Structures 

 

       5.6       EPR Spectroscopy; Key Principles  

5.6.1 Quantum Mechanical Description of EPR 

5.6.2 g-Value 

5.6.3 Hyperfine Splitting 

5.6.4 Biological Macromolecule Structural Information  

 

 

 

 

Chapter 6 - Diffraction and Microscopy 

 

6.1             Diffraction and Microscopy in Chemical Biology 

 

6.2         Key Principles of X-ray Diffraction 

6.2.1 Unit Cell 

6.2.2 Bragg Law 

6.2.3 Reciprocal Lattice  

6.2.4 Structure Factors 

6.2.5 The Phase Problem 

6.2.6 Harker Construction 

 

6.3          Structural Information from X-ray Diffraction 

6.3.1 Biological Macromolecule Crystallisation 

6.3.2 X-Ray Generation 

6.3.3 Determination of X-ray Diffraction Pattern  

6.3.4 Heavy Atom Derivitisation 

6.3.5 Fitting an Electron Density Map 

6.3.6 Biological Macromolecular Structures by X-ray Crystallography 

 

6.4         Neutron Diffraction 

 

6.5         Key Principles of Electron Microscopy  

6.5.1 Duality of Matter 

6.5.2 Electron Wavelengths 

6.5.3 Sample Preparation  

6.5.4 Contrast Imaging 

6.5.5 Image Processing 

6.5.6 Biological Macromolecular Structures from Electron Microscopy 

 

6.6         Key Principles of Scanning Probe Microscopy 

6.6.1 STM Concept 

6.6.2 Electron Tunnelling 

6.6.3 Piezo Electric Drives  

6.6.4 STM Scanning Modes 

6.6.5 Origin of AFM 

6.6.6 AFM Cantilever 

6.6.7 AFM Scanning Modes 

6.6.8 Biological Structural Information from STM and AFM 

 

Chapter 7 - Molecular Recognition and Binding  

 

7.1       Molecular Recognition and Binding in Chemical Biology 

7.1.1 Roles of Molecular Recognition and Binding 

7.1.1.1 Acetyl Choline, Receptor and Esterase 

7.1.1.2 Adaptive Immunity, Antibodies and Myasthenia Gravis 

7.1.1.3 DNA Packaging and Expression Control 

7.1.2 Theoretical Framework for Molecular Recognition and Binding 

7.1.2.1 Motion in Solution 

7.1.2.2 Long Range Molecular Recognition 

7.1.2.3 Short Range Molecular Recognition and Binding  

 

7.2       Theoretical Models of Binding 

7.2.1 Single Site Single Affinity Binding 

7.2.2 Independent Multiple Site, Equal Affinity Binding 

7.2.3 Independent Multiple Site, Variable Affinity Binding 

7.2.4 Dependent Multiple Site Cooperative Binding and Hill Equation 

 

7.3       Analysing Molecular Recognition and Binding  

7.3.1 Equilibrium Dialysis 

7.3.2 Titration Methodologies 

7.3.2.1 Titration Data Estimates 

7.3.2.2 Physical Properties vs Spectroscopic Signatures 

7.3.3 Isothermal Titration Calorimetry and Binding Thermodynamics 

7.3.3.1 Equilibrium Thermodynamics of Molecular Recognition and Binding 

7.3.3.2 Enthalpy of Binding and ITC 

7.3.3.3 Van’t Hoff Relationships 

7.3.4 Capillary Electrophoresis 

7.3.5 Resonant Mirror Biosensing (Surface Plasmon Resonance) 

 

7.4          Biological Molecular Recognition Studies 

7.4.1 LysU Enzyme Substrate Recognition 

7.4.2 Stress Protein Molecular Chaperones 

7.4.2.1 GroEL 

7.4.2.2 Hsp47 

7.4.3 Complementary Peptides 

 

Chapter 8 – Kinetics and Catalysis  

 

8.1          Catalysis in Chemical Biology 

8.1.1 Simple Principles in Biocatalysis 

8.1.2 Steady State Kinetics in Biocatalysis 

                            8.1.3 Steady-state Bioassays  

 

8.2          Steady State Kinetic Schemes 

8.2.1 Simple Steady State Kinetics and Michaelis-Menten Equation 

8.2.2 Interpretation of kcatand KM 

8.2.3 Determination of kcatand KM 

8.2.4 Effect of Steady State Inhibitors 

8.2.4.1 Competitive Inhibition 

8.2.4.2 Non-competitive Inhibition 

8.2.4.3 Un-competitive Inhibition 

 

8.2.5   Applicability of Michaelis-Menten Equation  

 

8.2.6          Multiple Substrate/Product Steady State Kinetics 

8.2.6.1 Multiple Catalytic Sites, Non-cooperative Uni-Uni Kinetic Scheme 

8.2.6.2 Multiple Catalytic Sites, Cooperative Uni Uni Kinetic Scheme and Hill Equation 

8.2.6.3 Ordered Uni-Bi Kinetic Scheme                                                                                                      8.2.6.4 Ordered Bi-Uni Kinetic Scheme 

8.2.7 Multiple Substrate/Product King-Altman Kinetics 

8.2.7.1 Reversible Uni-Uni Kinetic Scheme 

8.2.7.2 Ordered Bi-Bi Kinetic Scheme 

8.2.7.3 Ping-Pong Bi-Bi Kinetic Scheme 

8.2.7.4 Ordered Ter Bi and Ter Ter Kinetic Scheme 

 

8.3         Pre-steady State Kinetics 

8.3.1 Pre-steady State Bioassays 

8.3.2 First-Order Pre-steady State Equations 

8.3.3 Further Pre-steady State Equations 

 

8.4         Theories of Biocatalysis  

8.4.1 Intramolecular Catalysis and Stereo-control in Catalysis 

8.4.2 “Orbital Steering” 

8.4.3 Induced-Fit and Strain 

8.4.4 General-Acid-Base Catalysis 

8.4.4.1 Dixon-Webb Log Plots 

8.4.5 Electrophilic and Nucleophilic Catalysis 

8.46 Mechanisms of Biocatalysis by Selected Biocatalysts 

8.47 Transition State Stabilisation and Biocatalysis 

8.4.7.1 Basic Transition-State Concepts 

8.4.7.2 Binding Energy in Biocatalysis  

8.4.8 “Perfect Biocatalyst” Theory 

8.4.9 Linear-Free Energy Relationships 

 

8.5          Electron Transfer 

8.5.1 Electron Transfer Kinetics 

8.5.2 Electron Transfer Step 

 

Chapter 9 – Mass Spectrometry and Proteomics 

 

9.1              Mass Spectrometry in Chemical Biology 

 

9.2              Key Principles in Mass Spectrometry  

9.2.1 Ionisation Sources 

9.2.1.1 Traditional Techniques of Ionisation 

9.2.1.2 Desorption Ionisation Techniques – FAB and MALDI 

9.2.1.3 Spray Ionisation Techniques – Thermospray and Electrospray 

9.2.2 Mass Analysers in Mass Spectrometry 

9.2.2.1 Time of Flight (TOF) Mass Analysers  

9.2.2.2 Quadrupole Mass Analysers 

9.2.2.3 Ion Trap Mass Analysers  

9.2.2.4 Fourier Transform Ion Cyclotron Resonance (FTICR) and Orbitrap Mass Analysers 

9.2.2.5 Tandem Mass Analysers (MS/MS) 

 

9.3              Structural Analysis of Biological Macromolecules and Lipids by Mass Spectrometry 

9.3.1 Analysis of Individual Peptides by Mass Spectrometry 

9.3.2 Analysis of Proteins by Mass Spectrometry  

9.3.2.1 Protein Molecular Weight Determination 

9.3.2.2 Gel-Based Isolation and Digestion of a Protein for Mass Spectrometry 

9.3.2.3 Peptide Mass Fingerprinting for Protein Identification 

9.3.2.4 Tandem Mass Spectrometery for Protein Identification 

9.3.3 Analysis of Oligonucleotides by Mass Spectrometry 

9.3.4 Analysis of Carbohydrates and Glycoproteins by Mass Spectrometry 

9.3.5 Analysis of Lipids by Mass Spectrometry 

 

9.4              The Challenge of Proteomics 

9.4.1 Early Developments in Proteomics 

9.4.2 Using 2-D Gel Electrophoresis with Mass Spectrometry 

9.4.3 Isotope-Coded Affinity Tags 

9.4.4 Deciphering Protein Networks by Tandem Affinity Purification 

9.4.5 The Challenge of Membrane Proteins in Proteomics 

9.4.6 Proteomics and Post-Translational Modifications 

9.4.6.1 Comprehensive PTM Analysis of a Single Protein 

9.4.6.2 PTM Analysis of Protein Populations  

 

9.5              Genomics – Assigning Function to Genes and Proteins 

9.5.1 Protein Microarrays 

9.5.1.1 Analytical Arrays 

9.5.1.2 Functional Arrays 

9.5.2 Biochemical Genomics 

9.5.3 Chemical Genomics 

9.5.4 Structural Genomics 

9.5.5 Perspectives on the Future of Proteomics with Genomics 

 

Chapter 10 – Molecular Selection and Evolution 

 

10.1       Chemical Biology and the Origins of Life 

10.1.1 Order from Complexity 

10.1.2 Evolution from the Molecular Level 

10.1.3 Chemical Self-Organisation from Complexity 

              10.1.4 Origins of Biological Macromolecules of Life 

 

10.2       Molecular Breeding; Natural Selection Acting on Self-Organisation  

 

10.3       Directed Evolution of Protein Function 

10.3.1 Random Mutagenesis and PCR 

10.3.2 Mutagenesis and DNA Shuffling 

10.3.3 Oligodeoxynucleotide Cassette Mutagenesis 

10.3.4 Screening Strategies  

 

  1. Directed Evolution of Nucleic Acids 

10.4.1 Aptamers 

10.4.1.1 Design and Construction of Polydeoxynucleotide/Polynucleotide Libraries 

10.4.1.2 Partition, Amplification and Iteration 

10.4.1.3 Applications of Aptamers 

10.4.2 Selection of Catalytic RNA 

10.4.3 DNA Aptamers and Catalytic DNA 

 

10.5       Catalytic Antibodies 

 

 

Chapter 11 – Chemical Biology of Cells 

 

11.1       General Introduction 

 

11.2       Array Technologies, Microfluidics, and Miniaturization  

11.2.1 Arrays from Past to Present 

11.2.2 Micropatterned and Microfluidic Devices  

 

11.3       Chemical Genetics and Potential New Therapeutics 

11.3.1 Early Chemical Genetics 

11.3.2 More Recnt Chemical Genetics 

11.3.2.1 Chemical Genetics in MoA Identification 

11.3.2.2 Chemical Genetics in Drug Resistance and Drug-Drug Interactions 

 

11.4       Chemical Cellular Dynamics 

 

11.5       Chemical Biology and in vivo Cell Connectomics  

11.5.1 Brainbow Connectomics 

11.5.2 Brainbow Applications 

 

 

Chapter 12 – Chemical Biology of Stem Cells to Tissue Engineering 

 

12.1       General Introduction 

12.2       Chemical Stem Cell Biology 

12.2.1 Stem Cell Regulation 

12.2.1.1 Biochemical Regulation 

12.2.1.2 Biophysical Regulation 

12.2.2 Controlling Stem Cell Regulation by Biochemical and Biophysical Means 

12.2.3 Controlling Stem Cell Regulation by Genetic Means 

              12.2.4 Stem Cell Modelling 

12.2.4.1 Deterministic Modelling 

12.2.4.2 Other Modelling Approaches 

 

12.3       The Road to Cell Therapies 

12.3.1 The Need for Bioreactors 

12.3.2 Practical Bioreactors 

12.3.3 Practical Cell Therapies 

 

12.4       Tissue Engineering 

12.4.1 Biomaterials to Tissue Engineering 

12.4.2 Tissue Engineering and Regenerative Medicine 

 

 

Chapter 13 – Chemical Biology, Nanomedicine and Advanced Therapeutics 

 

13.1       General Introduction 

 

13.2       The Chemical Biology Approach to Gene Therapy  

13.2.1 Nantechnology to Nanomedicine 

13.2.2 Advanced Therapeutics – Gene Therapy 

13.2.3 Gene Therapy Strategies 

13.2.4 First Applications of Synthetic Nanoparticles in Gene Therapy Strategies 

13.2.5 Improving on the Therapeutic Nucleic Acid APIs 

13.2.6 The ABCD Nanoparticle Concept 

13.2.7 Formation of ABC/ABCD Nanoparticles for in vivo and Clinical Use 

13.2.8 Nanoparticles in Clinic 

13.2.9 Desiging Future ABC/ABCD Nanoparticles 

13.2.10 4Ss or Nanotechnology; Impact on 4 Ts of Delivery 

13.2.11 Future Prospects for Gene Therapy Enabled by LNP Nanomedicine 

 

13.3       Biophysical Characterisation of LNPs 

13.3.1 Dynamic Light Scattering 

13.3.2 Measuring Nanoparticulate Zeta-potentials 

13.3.3 Measuring Nanoparticle Properties in Complex Solutions 

 

13.4       Applications of LNPs with Small Molecule Drugs 

 

 

Chapter 14 – Chemical Biology and Advanced Diagnostics Leading to Precision  

                       Therapeutic Approaches 

 

14.1       General Introduction 

 

14.2       MRI Basic Principles Leading to Diagnostic Applications 

14.2.1 Small Molecule Positive Contrast Agents 

14.2.2 Imaging Nanoparticles 

 

14.3       PET/CT and SPECT Fundamentals 

14.3.1 Tracer Agents 

14.3.2 Nanomolecular Tracer Agents  

 

14.4       Understanding How to Control Nanoparticle Biodistribution Behaviour in vivo 

14.4.1 Designing Future Theranostic ABC/ABCD Nanoparticles 

 

14.5       Theranostics 

14.5.1 Multimodal “hard” TNPs 

14.5.2 Multimodal “soft” TNPs 

14.5.3 Towards Precision Therapeutic Approaches for Treatment 

14.5.4 Devising Precision Therapeutic Approaches for Treatment 

 

 

Chapter 15 – DNA Nanotechnology 

 

15.1       Background 

15.1.1 From Holliday Junctions to Double-Crossover and Paranemic DNA 

15.1.2 Scaffolded DNA Origami 

15.1.3 Single-Stranded Tile (SST) Assembly 

 

15.2       Three-Dimensional DNA Nanostructures 

 

15.3       Dynamic DNA Nanostructures 

 

15.4       Biomedical Applicationns of DNA Nanostructures 

 

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책