logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

[eBook Code] Keras to Kubernetes

[eBook Code] Keras to Kubernetes (eBook Code, 1st)

(The Journey of a Machine Learning Model to Production )

다타라지 재그디시 라오 (지은이)
Wiley
55,200원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
44,160원 -20% 0원
0원
44,160원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

[eBook Code] Keras to Kubernetes
eBook 미리보기

책 정보

· 제목 : [eBook Code] Keras to Kubernetes (eBook Code, 1st) (The Journey of a Machine Learning Model to Production )
· 분류 : 외국도서 > 컴퓨터 > 프로그래밍 > 알고리즘
· ISBN : 9781119564867
· 쪽수 : 320쪽
· 출판일 : 2019-04-16

목차

Introduction xiii

Chapter 1 Big Data and Artificial Intelligence 1

Data Is the New Oil and AI Is the New Electricity 1

Rise of the Machines 4

Exponential Growth in Processing 4

A New Breed of Analytics 5

What Makes AI So Special 7

Applications of Artificial Intelligence 8

Building Analytics on Data 12

Types of Analytics: Based on the Application 13

Types of Analytics: Based on Decision Logic 17

Building an Analytics-Driven System 18

Summary 21

Chapter 2 Machine Learning 23

Finding Patterns in Data 23

The Awesome Machine Learning Community 26

Types of Machine Learning Techniques 27

Unsupervised Machine Learning 27

Supervised Machine Learning 29

Reinforcement Learning 31

Solving a Simple Problem 31

Unsupervised Learning 33

Supervised Learning: Linear Regression 37

Gradient Descent Optimization 40

Applying Gradient Descent to Linear Regression 42

Supervised Learning: Classification 43

Analyzing a Bigger Dataset 48

Metrics for Accuracy: Precision and Recall 50

Comparison of Classification Methods 52

Bias vs. Variance: Underfitting vs. Overfitting 57

Reinforcement Learning 62

Model-Based RL 63

Model-Free RL 65

Summary 70

Chapter 3 Handling Unstructured Data 71

Structured vs. Unstructured Data 71

Making Sense of Images 74

Dealing with Videos 89

Handling Textual Data 90

Listening to Sound 104

Summary 108

Chapter 4 Deep Learning Using Keras 111

Handling Unstructured Data 111

Neural Networks 112

Back-Propagation and Gradient Descent 117

Batch vs. Stochastic Gradient Descent 119

Neural Network Architectures 120

Welcome to TensorFlow and Keras 121

Bias vs. Variance: Underfitting vs. Overfitting 126

Summary 129

Chapter 5 Advanced Deep Learning 131

The Rise of Deep Learning Models 131

New Kinds of Network Layers 132

Convolution Layer 133

Pooling Layer 135

Dropout Layer 135

Batch Normalization Layer 135

Building a Deep Network for Classifying Fashion Images 136

CNN Architectures and Hyper-Parameters 143

Making Predictions Using a Pretrained VGG Model 145

Data Augmentation and Transfer Learning 149

A Real Classification Problem: Pepsi vs. Coke 150

Recurrent Neural Networks 160

Summary 166

Chapter 6 Cutting-Edge Deep Learning Projects 169

Neural Style Transfer 169

Generating Images Using AI 180

Credit Card Fraud Detection with Autoencoders 188

Summary 198

Chapter 7 AI in the Modern Software World 199

A Quick Look at Modern Software Needs 200

How AI Fits into Modern Software Development 202

Simple to Fancy Web Applications 203

The Rise of Cloud Computing 205

Containers and CaaS 209

Microservices Architecture with Containers 212

Kubernetes: A CaaS Solution for Infrastructure Concerns 214

Summary 221

Chapter 8 Deploying AI Models as Microservices 223

Building a Simple Microservice with Docker and Kubernetes 223

Adding AI Smarts to Your App 228

Packaging the App as a Container 233

Pushing a Docker Image to a Repository 238

Deploying the App on Kubernetes as a Microservice 238

Summary 240

Chapter 9 Machine Learning Development Lifecycle 243

Machine Learning Model Lifecycle 244

Step 1: Define the Problem, Establish the Ground Truth 245

Step 2: Collect, Cleanse, and Prepare the Data 246

Step 3: Build and Train the Model 248

Step 4: Validate the Model, Tune the Hyper-Parameters 251

Step 5: Deploy to Production 252

Feedback and Model Updates 253

Deployment on Edge Devices 254

Summary 264

Chapter 10 A Platform for Machine Learning 265

Machine Learning Platform Concerns 265

Data Acquisition 267

Data Cleansing 270

Analytics User Interface 271

Model Development 275

Training at Scale 277

Hyper-Parameter Tuning 277

Automated Deployment 279

Logging and Monitoring 286

Putting the ML Platform Together 287

Summary 288

A Final Word . . . 288

Appendix A References 289

Index 295

저자소개

다타라지 재그디시 라오 (지은이)    정보 더보기
제너럴 일렉트릭(GE)의 수석 엔지니어로서 인도 방갈로르에서 근무하고 있다. 기계공학을 전공했으며 가스 터빈, 컴프레서, 기관차 같은 산업용 기계를 모니터링하고 통제하는 GE빌딩 소프트웨어에서 19년째 일해왔다. 글로벌 리서치에서 제품 설계를 위한 지식 기반 엔지니어링을 맡으면서 경력을 시작했다. 그 후 미국 버지니아주 노퍽의 GE 파워에서 가스 터빈 상태 모니터링 소프트웨어의 리더로 합류했다. GE 파워에서는 원격 모니터링 및 진단 사업의 최고 소프트웨어 설계자를 포함한 여러 역할을 수행했다. 2013년 인도로 돌아가 GE 트랜스포테이션에서 비디오 분석 및 예측 프로그램의 혁신 리더로 합류했다. 현재 운송사업부문의 애널리틱스 및 인공지능 전략 그룹을 이끌고 있으며, 예측 정비(predictive maintenance), 머신 비전(machine vision), 디지털 트윈(digital twins)과 같은 산업용 IoT 솔루션을 구축하고 있다. 그의 팀은 데이터 정제, 준비, 모델 선택, 하이퍼파라미터 튜닝, 분산 훈련, 자동 배포와 같은 주요 데이터 과학 문제를 해결하기 위해 최첨단 머신러닝 플랫폼을 구축하고 있다. 쿠버네티스(Kubernetes)에 기반을 둔 이 플랫폼은 차세대 운송 산업용 인터넷 솔루션을 호스팅할 것이다. GE를 통해 출원한 11개 특허를 보유하고 있으며 공인 GE 애널리틱스 엔지니어다. 인도의 고아공과대학교에서 기계공학 학사를 취득했다.
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책