logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

케라스부터 쿠버네티스까지

케라스부터 쿠버네티스까지

(머신러닝, 딥러닝 모델 개발부터 배포까지 단계별 가이드)

다타라지 재그디시 라오 (지은이), 김광일 (옮긴이)
에이콘출판
35,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
35,000원 -0% 0원
카드할인 500원
500원
34,500원 >
알라딘 로딩중
yes24 로딩중
교보문고 로딩중
11st 로딩중
영풍문고 로딩중
쿠팡 로딩중
쿠팡로켓 로딩중
G마켓 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

케라스부터 쿠버네티스까지
eBook 미리보기

책 정보

· 제목 : 케라스부터 쿠버네티스까지 (머신러닝, 딥러닝 모델 개발부터 배포까지 단계별 가이드)
· 분류 : 국내도서 > 컴퓨터/모바일 > 컴퓨터 공학 > 소프트웨어 공학
· ISBN : 9791161755410
· 쪽수 : 428쪽
· 출판일 : 2021-06-30

책 소개

케라스를 사용한 머신러닝 모델 개발부터 쿠버네티스에서의 모델 배포까지 전체 과정을 따라가면서 핵심 개념과 필요한 도구의 사용 방법 등을 소스 코드와 함께 쉽게 설명한다.

목차

1장. 빅데이터와 인공지능
__데이터는 새로운 석유이며 AI는 새로운 전기다
____기계들의 부상
____처리 능력의 지수적 성장
____애널리틱스의 새로운 유형
____무엇이 AI를 그렇게 특별하게 하는가
__인공지능의 응용
____데이터에서 애널리틱스의 구축
____애널리틱스의 유형: 응용 기준
____애널리틱스의 유형: 의사 결정 로직 기반
____애널리틱스 주도형 시스템의 구축
__요약

2장. 머신러닝
__데이터에서 패턴 찾기
__막강한 머신러닝 커뮤니티
__머신러닝 기법의 유형
____비지도학습
____지도학습
____강화학습
__간단한 문제의 해
____비지도학습
____지도학습: 선형회귀
____경사하강 최적화
____선형회귀에 경사하강법 적용하기
____지도학습: 분류
__더 큰 데이터셋의 분석
____정확도에 대한 측도: 정밀도 및 재현율
__분류 방법의 비교
__편향 대 분산: 미적합 대 과적합
__강화학습
____모델 기반 강화학습
____모델 프리 강화학습
__요약

3장. 비정형 데이터 다루기
__정형 데이터 대 비정형 데이터
__이미지 인식
__동영상 다루기
__텍스트 데이터 다루기
__소리 듣기
__요약

4장. 케라스를 사용한 딥러닝
__비정형 데이터의 처리
____신경망
____역전파와 경사하강법
____뱃치 경사하강법과 확률적 경사하강법
____신경망 아키텍처
__텐서플로와 케라스
__편향과 분산: 미적합과 과적합
__요약

5장. 고급 딥러닝
__심층 모델의 부상
__새로운 종류의 네트워크 층
____컨볼루션 층
____풀링 층
____드롭아웃 층
____뱃치 정규화 층
__패션 이미지 분류를 위한 심층 신경망 구축
__CNN 아키텍처와 하이퍼파라미터
__사전 훈련된 VGG 모델로 예측하기
__데이터 보강과 전이 학습
__실제 분류 문제: 펩시콜라 대 코카콜라
__순환 신경망
__요약

6장. 최첨단 딥러닝 프로젝트
__신경망 스타일 전이
__AI를 사용한 이미지 생성
__오토인코더를 사용한 신용카드 부정 사용 탐지
__요약

7장. 최신 소프트웨어 세계의 AI
__소프트웨어의 최신 요구 사항 훑어보기
__AI가 최신 소프트웨어 개발에 어떻게 적합한가
__간편한 웹 애플리케이션
__클라우드 컴퓨팅의 부상
__컨테이너와 CaaS
____컨테이너가 있는 마이크로서비스
__쿠버네티스: 인프라 관련 문제를 위한 CaaS 솔루션
__요약

8장. AI 모델을 마이크로서비스로 배포하기
__도커와 쿠버네티스를 사용한 간단한 마이크로서비스 구축
__앱에 AI 스마트 추가하기
__앱을 컨테이너로 패키징하기
__저장소에 도커 이미지 푸시하기
__앱을 쿠버네티스에 마이크로서비스로 배포하기
__요약

9장. 머신러닝 개발 수명주기
__머신러닝 모델 수명주기
____1단계: 문제의 정의와 실제 참값 확립
____2단계: 데이터의 수집, 정제 및 준비
____3단계: 모델 구축 및 훈련
____4단계: 모델 검증 및 하이퍼파라미터 튜닝
____5단계: 프로덕션 환경으로 배포
____피드백과 모델 업데이트
__엣지 장치에 배포하기
__요약

10장. 머신러닝 플랫폼
__머신러닝 플랫폼 문제
____데이터 수집
____데이터 정제
____애널리틱스 사용자 인터페이스
____모델 개발
____규모에 맞는 훈련
____하이퍼파라미터 튜닝
____자동 배포
____로깅 및 모니터링
__머신러닝 플랫폼 통합
__요약
__맺음말

저자소개

다타라지 재그디시 라오 (지은이)    정보 더보기
제너럴 일렉트릭(GE)의 수석 엔지니어로서 인도 방갈로르에서 근무하고 있다. 기계공학을 전공했으며 가스 터빈, 컴프레서, 기관차 같은 산업용 기계를 모니터링하고 통제하는 GE빌딩 소프트웨어에서 19년째 일해왔다. 글로벌 리서치에서 제품 설계를 위한 지식 기반 엔지니어링을 맡으면서 경력을 시작했다. 그 후 미국 버지니아주 노퍽의 GE 파워에서 가스 터빈 상태 모니터링 소프트웨어의 리더로 합류했다. GE 파워에서는 원격 모니터링 및 진단 사업의 최고 소프트웨어 설계자를 포함한 여러 역할을 수행했다. 2013년 인도로 돌아가 GE 트랜스포테이션에서 비디오 분석 및 예측 프로그램의 혁신 리더로 합류했다. 현재 운송사업부문의 애널리틱스 및 인공지능 전략 그룹을 이끌고 있으며, 예측 정비(predictive maintenance), 머신 비전(machine vision), 디지털 트윈(digital twins)과 같은 산업용 IoT 솔루션을 구축하고 있다. 그의 팀은 데이터 정제, 준비, 모델 선택, 하이퍼파라미터 튜닝, 분산 훈련, 자동 배포와 같은 주요 데이터 과학 문제를 해결하기 위해 최첨단 머신러닝 플랫폼을 구축하고 있다. 쿠버네티스(Kubernetes)에 기반을 둔 이 플랫폼은 차세대 운송 산업용 인터넷 솔루션을 호스팅할 것이다. GE를 통해 출원한 11개 특허를 보유하고 있으며 공인 GE 애널리틱스 엔지니어다. 인도의 고아공과대학교에서 기계공학 학사를 취득했다.
펼치기
김광일 (옮긴이)    정보 더보기
한국과학기술원 경영과학과에서 수리 알고리즘을 전공했으며 소프트웨어 개발자의 삶을 살았다. 몇몇 소프트웨어 벤처기업을 경영하며 성공과 실패의 굴곡을 두루 거치는 사이, 대학에서 강의를 하기도 했다. 2014년부터 머신러닝에 몰두해 프리랜서로 활동하면서 한국외국어대학교 및 경희대학교에서 머신러닝을 강의했으며, 2017년부터 동국대학 융합교육원 및 인공지능대학원에서 머신러닝, 데이터과학, 인공지능수학 등을 가르치고 있다.
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책