logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

The Book of Alternative Data: A Guide for Investors, Traders and Risk Managers

The Book of Alternative Data: A Guide for Investors, Traders and Risk Managers (Hardcover)

Saeed Amen, Alexander Denev (지은이)
John Wiley & Sons Inc
87,500원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
56,870원 -35% 0원
570원
56,300원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

The Book of Alternative Data: A Guide for Investors, Traders and Risk Managers
eBook 미리보기

책 정보

· 제목 : The Book of Alternative Data: A Guide for Investors, Traders and Risk Managers (Hardcover) 
· 분류 : 외국도서 > 경제경영 > 투자/증권 > 일반
· ISBN : 9781119601791
· 쪽수 : 416쪽
· 출판일 : 2020-07-21

목차

Preface

Part I  -  Introduction And Theory

Chapter 1. Alternative data – the lay of the land

1.1. Introduction

1.2. What is “Alternative Data”?

1.3. Segmentation of alternative data

1.4. The Many Vs of Big Data

1.5. Why alternative data?

1.6. Who is using alternative data?

1.7. Capacity of a strategy and alternative data

1.8. Alternative data dimensions

1.9. Who are the alternative data vendors?

1.10. Usage of alternative datasets on the buy side

1.11. Conclusion

Chapter 2. The value of alternative data

2.1. Introduction

2.2. The Decay of Investment Value

2.3. Data markets

2.4. The Monetary Value of Data (Part I)

2.5. Evaluating (alternative) data strategies with and without backtesting

2.5.1. Systematic investors

2.5.2. Discretionary Investors

2.5.3. Risk Managers

2.6. The Monetary Value of Data (Part II)

2.6.1. The buyer’s perspective

2.6.2. The seller’s perspective

2.7. The advantages of maturing alternative datasets

2.8. Summary

Chapter 3. Alternative data risks and challenges

3.1. Legal Aspects of Data

3.2. Risks of using alternative data

3.3. Challenges of using alternative data

3.3.1. Entity Matching

3.3.2. Missing Data

3.3.3. Structuring the data

3.3.4. Treatment of outliers

3.4. Aggregating the data

3.5. Summary

Chapter 4. Machine learning techniques

4.1. Introduction

4.2. Machine Learning – definitions and techniques

4.2.1. Bias, Variance and Noise

4.2.2. Cross-Validation

4.2.3. Introducing machine learning

4.2.4. Popular supervised machine learning techniques

4.2.5. Clustering based unsupervised machine learning techniques

4.2.6. Other unsupervised machine learning techniques

4.2.7. Machine learning libraries

4.2.8. Neutral networks and deep learning

4.2.9. Gaussian Processes

4.3. Which technique to choose?

4.4. Assumptions and Limitations of the Machine Learning Techniques

4.5. Structuring images

4.6. Natural Language Processing (NLP)

4.7. Summary

Chapter 5. The Processes behind the Use of Alternative Data

5.1. Introduction

5.2. Steps in the alternative data journey

5.2.1. Step 1 – Set up a vision and strategy

5.2.2. Step 2 – Identify the Appropriate Datasets

5.2.3. Step 3 – Perform due diligence on vendors

5.2.4. Step 4 – Pre-assess risks

5.2.5. Step 5 – Pre-assess the existence of signals

5.2.6. Step 6 - Data on-boarding

5.2.7. Step 7 – Data pre-processing

5.2.8. Step 8 – Signal extraction

5.2.9. Step 9 – Implementation (or deployment in production)

5.2.10. Maintenance process

5.3. Structuring teams to use alternative data

5.4. Data Vendors

5.5. Summary

Chapter 6. Factor Investing

6.1. Introduction

6.2. The CAPM

6.3. Factor Models

6.3.1. The Arbitrage Pricing Theory

6.3.2. The Fama-French 3-Factor Model

6.3.3. The Carhart Model

6.3.4. Other Approaches (Data Mining)

6.4. The difference between cross sectional and time series trading approaches

6.5. Why factor investing?

6.6. Smart beta indices using alternative data inputs

6.7. ESG factors

6.8. Direct and Indirect Prediction

6.9. Summary

Part II  -  Practical Applications

Chapter 7. Missing Data  - Background

7.1. Introduction

7.2. Missing Data Classification

7.2.1. Missing Data Treatments

7.2.1.1. Deletion

7.2.1.2. Replacement

7.2.1.3. Predictive Imputation

7.3. Literature overview of missing data treatments

7.3.1. Luengo et al. (2012)

7.3.2. Garcia-Laencina et al. (2010)

7.3.3. Grzymala-Busse et al. (2000)

7.3.4. Zou et al (2005)

7.3.5. Jerez et al (2010)

7.3.6. Farhangfar et al. (2008)

7.3.7. Kang et al (2013)

7.3.8. Summary

Chapter 8. Missing Data – Case Studies

8.1. Introduction

8.2. Case Study – Imputing missing values in multivariate Credit Default Swap time series

8.2.1. Missing data classification

8.2.2. Imputation Metrics

8.2.3. CDS data and test data generation

8.2.4. Multiple imputation methods

8.2.4.1. The MVN Case

8.2.4.2. Expectation maximisation (EM) procedure

8.2.5. Deterministic and EOF based techniques

8.2.5.1. Brief recap of Singular Value Decomposition (SVD)

8.2.5.2. Data interpolation with empirical orthogonal functions (DINEOF)

8.2.5.3. Multiple singular spectral analysis (MSSA)

8.2.6. Results

8.3. Case Study – Satellite Images

8.4. Summary

8.5. Appendix: General description of the MICE procedure

8.6. Appendix: Software libraries used in this chapter

8.6.1.1. MICE

8.6.1.2. Amelia II

8.6.1.3. MissForest: Random Forest imputation

8.6.1.4. DINEOF

8.6.1.5. MSSA

Chapter 9. Outliers (Anomalies)

9.1. Introduction

9.2. Outliers definition, classification, and approaches to detection

9.3. Temporal structure

9.4. Global vs local outliers, point anomalies and micro-clusters

9.5. Outlier detection problem setup

9.6. Comparative evaluation of outlier detection algorithms

9.7. Approaches to outlier explanation

9.7.1. Micenkova et al.

9.7.2. Duan et al.

9.7.3. Angiulli et al.

9.8. Case Study - outlier detection on Fed communications index

9.9. Summary

9.10. Appendix

9.10.1. Model-based techniques

9.10.2. Distance-based techniques

9.10.3. Density-based Techniques

9.10.4. Heuristics-based approaches

Chapter 10. Automotive Fundamental Data

10.1. Introduction

10.2. Data

10.3. Approach 1 – Indirect Approach

10.3.1. The Steps Followed

10.3.2. Stage 1

10.3.2.1. Process

10.3.2.2. Example

10.3.2.3. Clairvoyance

10.3.2.4. Ranking factors used

10.3.2.5. Supporting statistics

10.3.2.6. Other info

10.3.2.7. Results

10.4. Approach 2 – Direct Approach

10.4.1. The Data

10.4.2. Factor Generation

10.4.3. Factor performance

10.4.4. Detailed factor results

10.4.4.1. revenues_sales_prev_3m_sum_prev_1m_pct_change – monthly change in quarterly sales volume

10.4.4.2. ww_market_share_prev_1m_pct_change – monthly change in worldwide market share

10.4.4.3. usa_sales_volume_prev_12m_sum_prev_3m_pct_change – quarterly change in yearly US sales volume

10.4.4.4. Factor correlations

10.4.5. Notes

10.5. Gaussian Processes Example

10.6. Summary

10.7. Appendix

10.7.1. List of companies

10.7.2. Description of financial statement items

10.7.3. Ratios used

10.7.4. IHS Markit data features

10.7.5. Reporting delays by country

Chapter 11. Survey and crowdsourced data

11.1. Introduction

11.2. Survey Data as Alternative Data

11.3. About Grapedata

11.4. The Product

11.5. Case Studies

11.5.1. Case Study – Company Event Study (Pooled Survey)

11.5.2. Case Study – Oil & Gas Production (Q&A Survey)

11.6. Technical considerations

11.7. Alpha capture data

11.8. Crowdsourcing analyst estimates

11.9. Summary

11.10. Appendix

Chapter 12. Purchasing Managers’ Index

12.1. Introduction

12.2. PMI Performance

12.3. Nowcasting GDP Growth

12.4. Impacts on financial markets

12.5. Summary

Chapter 13. Satellite imagery and aerial photography

13.1. Introduction

13.2. Forecasting US export growth

13.3. Car counts and earnings per share for retailers

13.4. Measuring Chinese PMI manufacturing with satellite data

13.5. Summary

Chapter 14. Location data

14.1. Introduction

14.2. Shipping data to track crude oil supplies

14.3. Mobile phone location data to understand retail activity

14.3.1. Trading REIT ETF using mobile phone location data

14.3.2. Estimating earnings per share with mobile phone location data

14.4. Taxi ride data and New York Fed meetings

14.5. Corporate jet location data and M&A

14.6. Summary

Chapter 15. Text, web, social media and news

15.1. Introduction

15.2. Collecting web data

15.3. Social media

15.3.1. Hedonmeter Index

15.3.2. Using Twitter data to help forecast US change in nonfarm payrolls

15.3.3. Twitter data to forecast stock market reaction to FOMC

15.3.4. Liquidity and sentiment from social media

15.4. News

15.4.1. Machine readable news to trade FX and understand FX volatility

15.4.2. Federal Reserve communications and US Treasury yields

15.5. Other web sources

15.5.1. Measuring consumer price inflation

15.6. Summary

Chapter 16. Investor attention

16.1. Introduction

16.2. Readership of payrolls to measure investor attention

16.3. Google Trends data to measure market themes

16.4. Investopedia search data to measure investor anxiety

16.5. Using Wikipedia to understand price action in cryptocurrencies

16.6. Online attention for countries to inform EMFX trading

16.7. Summary

Chapter 17. Consumer transactions

17.1. Introduction

17.2. Credit and debit card transaction data

17.3. Consumer receipts

17.4. Summary

Chapter 18. Government, industrial and corporate data

18.1. Introduction

18.2. Using innovation measures to trade equities

18.3. Quantifying currency crisis risk

18.4. Modelling central bank invention in currency markets

18.5. Summary

Chapter 19. Market data

19.1. Introduction

19.2. Relationship between institutional FX flow data and FX spot

19.3. Understanding liquidity using high frequency FX data

19.4. Summary

Chapter 20. Alternative data in private markets

20.1. Introduction

20.2. Defining private equity and venture capital firms

20.3. Private equity datasets

20.4. Understanding the performance of private firms

20.5. Summary

Chapter 21. Conclusions

21.1. Some last words

Bibliography

About the Authors

Index

저자소개

사이드 아멘 (지은이)    정보 더보기
Cuemacro의 창업자다. 15년 동안 주요 투자 은행, 리먼 브라더스, 노무라 등 시스템 트레이딩 전략과 계량 지수를 개발했다. Cuemacro를 통해 시스템 트레이딩 분야의 고객들을 위한 연구를 상담하고 출판한다. 깃허브(GitHub)에서 거래 전략을 개발하기 위한 인기 있는 라이브러리 중 하나인 finmarketpy를 포함해 많은 인기 있는 오픈 소스 파이썬 라이브러리를 개발했다. 고객들은 주요 퀀트 펀드를 포함했다. 또한 블룸버그와 레이븐팩(RavenPack)을 포함한 데이터 회사의 대체 데이터 세트에 대한 수많은 연구 프로젝트를 수행했다. 또한 퀀트 싱크탱크인 탈레시안(Thalesian)의 공동 설립자이며, 런던 퀸메리대학의 객원 강사다. 임페리얼 칼리지 런던에서 수학과 컴퓨터 과학에서 1등급 우등 석사 학위를 받고 졸업했다.
펼치기
알렉산더 데네브 (지은이)    정보 더보기
금융, 금융 모델링 및 머신러닝 분야에서 15년 이상의 경력을 보유하고 있으며, 현재 딜로이트 LLP의 금융 서비스 부문(Financial Services, Risk Advisory) 책임자를 맡고 있다. 전에는 IHS 마킷(IHS Markit)에서 Quantitative Research & Advanced Analytics를 이끌었으며, 분석 모델 개발을 위한 센터를 설립하고 유지했다. 또한 스코틀랜드 왕립 은행(Royal Bank of Scotland), 소시에테 제네랄(Societe General), 유럽 투자 은행(European Investment Bank), 유럽 투자 펀드(European Investment Fund)에서 일했으며 유럽 금융 안정 기구(European Financial Stability Facility)와 유럽 안정 메커니즘(European Stability Mechanism)의 금융공학 작업에도 참여했다. 이탈리아 로마대학교에서 인공지능을 전공하고 물리학 석사 학위를 취득했으며 영국 옥스퍼드대학교에서 수학 금융 학위를 취득했다. 스트레스 테스트와 시나리오 분석에서 자산 배분에 이르는 주제에 관한 여러 논문과 책을 썼다.
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책