logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Principles of Physical Optics

Principles of Physical Optics (Hardcover, 2nd)

A. Charles (지은이)
Wiley
65,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
65,000원 -0% 0원
1,950원
63,050원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Principles of Physical Optics
eBook 미리보기

책 정보

· 제목 : Principles of Physical Optics (Hardcover, 2nd) 
· 분류 : 외국도서 > 과학/수학/생태 > 과학 > 물리학 > 광학
· ISBN : 9781119801795
· 쪽수 : 592쪽
· 출판일 : 2022-07-06

목차

1 The Physics of Waves

1.1 Introduction

1.2 One-Dimensional Wave Equation

1.2.1 Transverse Traveling Waves on a String

1.3 General Solutions to the 1-D Wave Equation

1.4 Harmonic Traveling Waves

1.5 The Principle of Superposition

1.5.1 Periodic Traveling Waves

1.5.2 Linear Independence

1.6 Complex Numbers and the Complex Representation

1.6.1 Complex Algebra

1.6.2 The Complex Representation of Harmonic Waves

1.7 The Three-Dimensional Wave Equation

1.7.1 Three-Dimensional Plane Waves

1.7.2 Spherical Waves


2 Electromagnetic Waves and Photons

2.1 Introduction

2.2 Electromagnetism

2.3 Electromagnetic Wave Equations

2.3.1 Transverse Electromagnetic Waves

2.3.2 Energy Flow and the Poynting Vector

2.3.3 Irradiance

2.4 Photons

2.4.1 Single-Photon Interference

2.5 The Electromagnetic Spectrum


3 Reflection and Refraction

3.1 Introduction

3.2 Overview of Reflection and Refraction

3.2.1 Fermat’s Principle of Least Time

3.3 Maxwell’s Equations at an Interface

3.3.1 Boundary Conditions

3.3.2 Electromagnetic Waves at an Interface

3.4 The Fresnel Equations

3.4.1 Incident Wave Polarized Normal to the Plane of Incidence

3.4.2 Incident Wave Polarized Parallel to the Plane of Incidence

3.5 Interpretation of the Fresnel Equations

3.5.1 Normal Incidence

3.5.2 Brewster’s Angle

3.5.3 Total Internal Reflection

3.5.4 Plots of the Fresnel Equations vs. Incident Angle

3.6 Reflectivity and Transmissivity

3.6.1 Plots of Reflectivity and Transmissivity vs. Incident Angle

3.6.2 The Evanescent Wave

3.7 Scattering

3.7.1 Atmospheric Scattering

3.7.2 Optical Materials

3.8 Linear Polarization

3.8.1 Linear Polarizers

3.8.2 Linear Polarizer Design

3.9 Birefringence

3.10 Circular and Elliptical Polarization

3.10.1 Wave Plates and Circular Polarizers

3.11 Jones Vectors and Matrices

3.11.1 Birefringent Colors

3.12 The Electro-optic Effect

3.12.1 Pockels Cells

3.12.2 Kerr Cells

3.13 Optical Activity

3.14 Faraday Rotation

3.15 Acousto-optic Effect


4 Geometric Optics 1

4.1 Introduction

4.2 Reflection and Refraction at Aspheric Surfaces

4.3 Reflection and Refraction at a Spherical Surface

4.3.1 Spherical Reflecting Surfaces

4.3.2 Spherical Refracting Surfaces

4.3.3 Sign Conventions and Ray Diagrams

4.4 Lens Combinations

4.4.1 Thin-Lenses in Close Combination

4.5 *Principal Points and Effective Focal Lengths

4.6 Aberrations

4.6.1 Chromatic Aberration

4.6.2 Spherical Aberration

4.6.3 Astigmatism and Coma

4.6.4 Field Curvature

4.6.5 Diffraction

4.7 Optical Instruments

4.7.1 The Camera

4.7.2 The Eye

4.7.3 The Magnifying Glass

4.7.4 The Compound Microscope

4.7.5 The Telescope

4.7.6 The Exit Pupil

4.8 *Optical Fibers


5 Geometric Optics 2

5.1 *Radiometry

5.1.1 Extended Sources

5.1.2 Radiometry of Blackbody Sources

5.1.3 Rayleigh-Jeans Theory and the Ultraviolet Catastrophe

5.1.4 Planck’s Quantum Theory of Blackbody Radiation

5.2 *Thick Lenses

5.2.1 *Principal Points and Effective Focal Lengths of Thick Lenses

5.3 Aberrations

5.4 *Introduction to Matrix Methods in Paraxial Geometrical Optics

5.4.1 The Translation Matrix

5.4.2 The Refraction Matrix

5.4.3 The Reflection Matrix

5.4.4 The Ray Transfer Matrix

5.4.5 Location of Cardinal Points for an Optical System


6 Superposition and Interference

6.1 Introduction

6.2 Superposition of Harmonic Waves

6.3 Interference Between Two Monochromatic Electromagnetic Waves

6.3.1 Linear Power Detection

6.3.2 Interference Between Beams with the Same Frequency

6.3.3 Thin-Film Interference

6.3.4 Quasi-Monochromatic Sources

6.3.5 Fringe Geometry

6.3.6 Interference Between Beams with Different Frequencies

6.4 Fourier Analysis

6.4.1 Fourier Transforms

6.4.2 Position Space, k-Space Domain

6.4.3 Frequency-Time Domain

6.5 Properties of Fourier Transforms

6.5.1 Symmetry Properties

6.5.2 Linearity

6.5.3 Transform of a Transform

6.6 Wavepackets

6.7 Group and Phase Velocity

6.8 Interferometry

6.9 Single-Photon Interference

6.10 Multiple-Beam Interference

6.10.1 The Scanning Fabry-Perot Interferometer

6.11 Interference in Multilayer Films

6.11.1 Antireflection Films

6.11.2 High-Reflectance Films

6.12 Coherence

6.12.1 Temporal Coherence

6.12.2 Spatial Coherence

6.12.3 Michelson’s Stellar Interferometer

6.12.4 Irradiance Interferometry

6.12.5 Telescope Arrays


7 Diffraction

7.1 Introduction

7.2 Huygens’ Principle

7.2.1 Babinet’s Principle

7.3 Fraunhofer Diffraction

7.3.1 Single Slit

7.3.2 Rectangular Aperture

7.3.3 Circular Aperture

7.3.4 Optical Resolution

7.3.5 More on Stellar Interferometry

7.3.6 Double Slit

7.3.7 N Slits: The Diffraction Grating

7.3.8 The Diffraction Grating

7.3.9 Fraunhofer Diffraction as a Fourier Transform

7.3.10 Apodization

7.4 Fresnel Diffraction

7.4.1 Fresnel Zones

7.4.2 Holography

7.4.3 Numerical Analysis of Fresnel Diffraction with Circular Symmetry

7.4.4 Fresnel Diffraction from Apertures with Cartesian Symmetry

7.5 Introduction to Quantum Electrodynamics

7.5.1 Feynman’s Interpretation


8 Lasers

8.1 Introduction

8.2 Energy Levels in Atoms, Molecules, and Solids

8.2.1 Atomic Energy Levels

8.2.2 Molecular Energy Levels

8.2.3 Solid-state Energy Bands

8.2.4 Semiconductor Devices

8.3 Stimulated Emission and Light Amplification

8.4 Laser Systems

8.4.1 Atomic Gas Lasers

8.4.2 Molecular Gas Lasers

8.4.3 Solid-State Lasers

8.4.4 Other Laser Systems

8.5 Longitudinal Cavity Modes

8.6 Frequency Stability

8.7 Introduction to Gaussian Beams

8.8.1 Overview of Gaussian Beam Properties

8.8 Derivation of Gaussian Beam Properties

8.8.1 Approximate Solutions to the Wave Equation

8.8.2 Paraxial Spherical Gaussian Beams

8.8.3 Gaussian Beam Focusing

8.8.4 Matrix Methods and the ABCD Law

8.9 Laser Cavities

8.9.1 Laser Cavity with Equal Mirror Curvatures

8.9.2 Laser Cavity with Unequal Mirror Curvatures

8.9.3 Stable Resonators

8.9.4 Traveling Wave Resonators

8.9.5 Unstable Resonators

8.9.6 Transverse Cavity Modes


9 Optical Imaging

9.1 Introduction

9.2 Abbe Theory of Image Formation

9.2.1 Phase Contrast Microscope

9.3 The Point Spread Function

9.3.1 Coherent vs. Incoherent Images

9.3.2 Speckle

9.4 Resolving Power of Optical Instruments

9.5 Image Recording

9.5.1 Photographic Film

9.5.2 Digital Detector Arrays

9.6 Contrast Transfer Function

9.7 Spatial Filtering

9.8 Adaptive Optics

 

10 Nonlinear Optics and Dispersion

10.1 Introduction

10.2 Nonlinear Optics

10.3 Harmonic Generation

10.3.1 Phase Conjugation Reflection by Degenerate Four-Wave Mixing

10.4 Frequency Mixing

10.5 *Dispersion

10.5.1 Dispersion in Dielectric Media

10.5.2 Dispersion in Conducting Media

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책