logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

일간
|
주간
|
월간

실시간 검색어

검색가능 서점

도서목록 제공

A Computational Approach to Statistical Learning

A Computational Approach to Statistical Learning (Hardcover)

Michael Kane, Taylor Arnold, Bryan W. Lewis (지은이)
Chapman & Hall
193,700원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
158,830원 -18% 0원
7,950원
150,880원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

A Computational Approach to Statistical Learning
eBook 미리보기

책 정보

· 제목 : A Computational Approach to Statistical Learning (Hardcover) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 확률과 통계 > 일반
· ISBN : 9781138046375
· 쪽수 : 376쪽
· 출판일 : 2019-01-29

목차

1. Introduction

Computational approach

Statistical learning

Example

Prerequisites

How to read this book

Supplementary materials

Formalisms and terminology

Exercises


2. Linear Models

Introduction

Ordinary least squares

The normal equations

Solving least squares with the singular value decomposition

Directly solving the linear system

(?) Solving linear models with orthogonal projection

(?) Sensitivity analysis

(?) Relationship between numerical and statistical error

Implementation and notes

Application: Cancer incidence rates

Exercises


3. Ridge Regression and Principal Component Analysis

Variance in OLS

Ridge regression

(?) A Bayesian perspective

Principal component analysis

Implementation and notes

Application: NYC taxicab data

Exercises


4. Linear Smoothers

Non-linearity

Basis expansion

Kernel regression

Local regression

Regression splines

(?) Smoothing splines

(?) B-splines

Implementation and notes

Application: US census tract data

Exercises


5. Generalized Linear Models

Classification with linear models

Exponential families

Iteratively reweighted GLMs

(?) Numerical issues

(?) Multi-class regression

Implementation and notes

Application: Chicago crime prediction

Exercises


6. Additive Models

Multivariate linear smoothers

Curse of dimensionality

Additive models

(?) Additive models as linear models

(?) Standard errors in additive models

Implementation and notes

Application: NYC flights data

Exercises


7. Penalized Regression Models

Variable selection

Penalized regression with the `- and `-norms

Orthogonal data matrix

Convex optimization and the elastic net

Coordinate descent

(?) Active set screening using the KKT conditions

(?) The generalized elastic net model

Implementation and notes

Application: Amazon product reviews

Exercises


8. Neural Networks

Dense neural network architecture

Stochastic gradient descent

Backward propagation of errors

Implementing backpropagation

Recognizing hand written digits

(?) Improving SGD and regularization

(?) Classification with neural networks

(?) Convolutional neural networks

Implementation and notes

Application: Image classification with EMNIST

Exercises


9. Dimensionality Reduction

Unsupervised learning

Kernel functions

Kernel principal component analysis

Spectral clustering

t-Distributed stochastic neighbor embedding (t-SNE)

Autoencoders

Implementation and notes

Application: Classifying and visualizing fashion MNIST

Exercises


10. Computation in Practice

Reference implementations

Sparse matrices

Sparse generalized linear models

Computation on row chunks

Feature hashing

Data quality issues

Implementation and notes

Application

Exercises


A Matrix Algebra

A Vector spaces

A Matrices

A Other useful matrix decompositions

B Floating Point Arithmetic and Numerical Computation

B Floating point arithmetic

B Numerical sources of error

B Computational effort 

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책