logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Linear Algebra and Probability for Computer Science Applications

Linear Algebra and Probability for Computer Science Applications (Hardcover)

어니스트 데이비스 (지은이)
Taylor & Francis
190,160원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
155,930원 -18% 0원
7,800원
148,130원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Linear Algebra and Probability for Computer Science Applications
eBook 미리보기

책 정보

· 제목 : Linear Algebra and Probability for Computer Science Applications (Hardcover) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 대수학 > 선형대수학
· ISBN : 9781466501553
· 쪽수 : 431쪽
· 출판일 : 2012-05-02

목차

MATLABDesk calculator operations Booleans Nonstandard numbers Loops and conditionals Script file Functions Variable scope and parameter passing I: Linear Algebra Vectors Definition of vectors Applications of vectorsBasic operations on vectorsDot productVectors in MATLAB: Basic operationsPlotting vectors in MATLABVectors in other programming languages Matrices Definition of matrices Applications of matrices Simple operations on matrices Multiplying a matrix times a vector Linear transformation Systems of linear equations Matrix multiplication Vectors as matrices Algebraic properties of matrix multiplication Matrices in MATLAB Vector Spaces Subspaces Coordinates, bases, linear independenceOrthogonal and orthonormal basis Operations on vector spaces Null space, image space, and rank Systems of linear equations Inverses Null space and Rank in MATLABVector spaces Linear independence and bases Sum of vector spacesOrthogonality Functions Linear transformations Inverses Systems of linear equations The general definition of vector spaces Algorithms Gaussian elimination: Examples Gaussian elimination: DiscussionComputing a matrix inverse Inverse and systems of equations in MATLAB Ill-conditioned matrices Computational complexity Geometry Arrows Coordinate systems Simple geometric calculationsGeometric transformations Change of Basis, DFT, and SVD Change of coordinate systemThe formula for basis change Confusion and how to avoid it Nongeometric change of basis Color graphics Discrete Fourier transform (Optional)Singular value decompositionFurther properties of the SVDApplications of the SVDMATLAB II: Probability Probability The interpretations of probability theory Finite sample spaces Basic combinatorial formulas The axioms of probability theoryConditional probability The likelihood interpretation Relation between likelihood and sample space probability Bayes’ law IndependenceRandom variables Application: Naive Bayes’ classification Numerical Random Variables Marginal distribution Expected value Decision theoryVariance and standard deviation Random variables over infinite sets of integers Three important discrete distributionsContinuous random variables Two important continuous distributionsMATLAB Markov Models Stationary probability distribution PageRank and link analysisHidden Markov models and the k-gram model Confidence Intervals The basic formula for confidence intervals Application: Evaluating a classifier Bayesian statistical inference (Optional) Confidence intervals in the frequentist viewpoint: (Optional) Hypothesis testing and statistical significance Statistical inference and ESP Monte Carlo Methods Finding area Generating distributions Counting Counting solutions to DNF (Optional) Sums, expected values, integrals Probabilistic problems Resampling Pseudo-random numbers Other probabilistic algorithmsMATLAB Information and Entropy Information Entropy Conditional entropy and mutual information Coding Entropy of numeric and continuous random variables The principle of maximum entropyStatistical inference Maximum Likelihood Estimation Sampling Uniform distribution Gaussian distribution: Known variance Gaussian distribution: Unknown variance Least squares estimates Principal component analysis Applications of PCA References Notation Index

저자소개

어니스트 데이비스 (지은이)    정보 더보기
뉴욕대학교의 쿠란트 수학연구소(Courant Institute of Mathematical Sciences)에서 컴퓨터공학을 가르치고 있다. 그는 AI의 상식적 추론(commonsense reasoning) 영역에서 세계적이고 독보적인 전문가로 꼽힌다. 저서로는 《상식적 지식의 표상》(Representations of Commonsense Knowledge) 외 3권이 있다.
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책