logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Introduction to Proof Through Number Theory

Introduction to Proof Through Number Theory (Paperback)

Bennett Chow (지은이)
American Mathematical Society
162,420원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
146,170원 -10% 0원
4,390원
141,780원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Introduction to Proof Through Number Theory
eBook 미리보기

책 정보

· 제목 : Introduction to Proof Through Number Theory (Paperback) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 논리
· ISBN : 9781470470272
· 쪽수 : 442쪽
· 출판일 : 2023-02-09

목차

Cover
Title page
Contents
Preface
Philosophy about learning and teaching
Content of this book
Style of this book
Problem solving
LaTeX
Origins
Further reading
Acknowledgments
Notations and Symbols
Chapter 1. Evens, Odds, and Primes: A Taste of Number Theory
1.1. A first excursion into prime numbers
1.2. Even and odd integers
1.3. Calculating primes and the sieve of Eratosthenes
1.4. Division
1.5. Greatest common divisor
1.6. Statement of prime factorization
1.7*. Perfect numbers
1.8*. One of the Mersenne conjectures
1.9*. Twin primes: An excursion into the unknown
1.10*. Goldbach’s conjecture
1.11. Hints and partial solutions for the exercises
Chapter 2. Mathematical Induction
2.1. Mathematical induction
2.2. Rates of growth of functions
2.3. Sums of powers of the first ?? positive integers
2.4. Strong mathematical induction
2.5. Fibonacci numbers
2.6. Recursive definitions
2.7. Arithmetic and algebraic equalities and inequalities
2.8. Hints and partial solutions for the exercises
Chapter 3. Logic: Implications, Contrapositives, Contradictions, and Quantifiers
3.1. The need for rigor
3.2. Statements
3.3. Truth teller and liar riddle: Asking the right question
3.4*. Logic puzzles
3.5. Logical connectives
3.6. Implications
3.7. Contrapositive
3.8. Proof by contradiction
3.9. Pythagorean triples
3.10. Quantifiers
3.11. Hints and partial solutions for the exercises
Chapter 4. The Euclidean Algorithm and Its Consequences
4.1. The Division Theorem
4.2. There are an infinite number of primes
4.3. The Euclidean algorithm
4.4. Consequences of the Division Theorem
4.5. Solving linear Diophantine equations
4.6. “Practical” applications of solving linear Diophantine equations (wink \smiley)
4.7*. (Polynomial) Diophantine equations
4.8. The Fundamental Theorem of Arithmetic
4.9. The least common multiple
4.10. Residues modulo an odd prime
4.11. Appendix
4.12. Hints and partial solutions for the exercises
Chapter 5. Sets and Functions
5.1. Basics of set theory
5.2. Cartesian products of sets
5.3. Functions and their properties
5.4. Types of functions: Injections, surjections, and bijections
5.5. Arbitrary unions, intersections, and cartesian products
5.6*. Universal properties of surjections and injections
5.7. Hints and partial solutions for the exercises
Chapter 6. Modular Arithmetic
6.1. Multiples of 3 and 9 and the digits of a number in base 10
6.2. Congruence modulo ??
6.3. Inverses, coprimeness, and congruence
6.4. Congruence and multiplicative cancellation
6.5*. Fun congruence facts
6.6. Solving linear congruence equations
6.7*. The Chinese Remainder Theorem
6.8. Quadratic residues
6.9. Fermat’s Little Theorem
6.10*. Euler’s totient function and Euler’s Theorem
6.11*. An application of Fermat’s Little Theorem: The RSA algorithm
6.12*. The Euclid?Euler Theorem characterizing even perfect numbers
6.13*. Twin prime pairs
6.14. Chameleons roaming around in a zoo
6.15. Hints and partial solutions for the exercises
Chapter 7. Counting Finite Sets
7.1. The addition principle
7.2. Cartesian products and the multiplication principle
7.3. The inclusion-exclusion principle
7.4. Binomial coefficients and the Binomial Theorem
7.5. Counting functions
7.6. Counting problems
7.7*. Using the idea of a bijection
7.8. Hints and partial solutions for the exercises
Chapter 8. Congruence Class Arithmetic, Groups, and Fields
8.1. Congruence classes modulo ??
8.2. Inverses of congruence classes
8.3. Reprise of the proof of Fermat’s Little Theorem
8.4. Equivalence relations, equivalence classes, and partitions
8.5. Elementary abstract algebra
8.6. Rings, principal ideal domains, and all that
8.7. Fields
8.8*. Quadratic residues and the law of quadratic reciprocity
8.9. Hints and partial solutions for the exercises
Bibliography
Index
Back Cover

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책