logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Text Analytics with Python: A Practical Real-World Approach to Gaining Actionable Insights from Your Data

Text Analytics with Python: A Practical Real-World Approach to Gaining Actionable Insights from Your Data (Paperback)

디판잔 사카 (지은이)
Apress
77,600원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
알라딘 로딩중
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Text Analytics with Python: A Practical Real-World Approach to Gaining Actionable Insights from Your Data
eBook 미리보기

책 정보

· 제목 : Text Analytics with Python: A Practical Real-World Approach to Gaining Actionable Insights from Your Data (Paperback) 
· 분류 : 외국도서 > 컴퓨터 > 프로그래밍 언어 > Python
· ISBN : 9781484223871
· 쪽수 : 385쪽
· 출판일 : 2016-12-01

목차

Chapter 1: Natural Language Basics.- Chapter Goal: Introduces the readers to the basics of NLP and Text processing No of pages: 40 - 50 Sub -Topics 1. Language Syntax and Structure 2. Text formats and grammars 3. Lexical and Text Corpora resources 4. Deep dive into the Wordnet corpus 5. Parts of speech, Stemming and lemmatization Chapter 2: Python Refresher for Text Analytics Chapter Goal: A useful chapter for people who do not know python as well as for experienced people who can use it as a quick reference for useful commands and techniques for text processing using python No of pages: 30 - 35 Sub - Topics 1. Python data structures and constructs 2. Functions, conditionals and code flow 3. Handling strings with Python 4. Regular Expressions with Python 5. Quick glance into nltk, gensim and pattern Chapter 3: Text Processing Chapter Goal: This chapter covers all the techniques and capabilities needed for processing and parsing text into easy to understand formats. We also look at how to segment and normalize text. No of pages : 35 - 40 Sub - Topics: 1. Sentence and word tokenization 2. Text tagging and chunking 3. Text Parse Trees 3. Text normalization 4. Text spell checks and removal of redundant characters 5. Synonyms and Synsets Chapter 4: Text Classification Chapter Goal: Introduces readers to the concept of classification as a supervised machine learning problem and looks at a real world example for classifying text documents No of pages: 40 - 45 Sub - Topics: 1. Classification basics 2. Types of classifiers 3. Feature generation of text documents 4. Types of feature generators 5. Building a text classifier on real world data 6. Evaluating Classifiers 7. Binary and multi-class classification models Chapter 5: Text summarization and topic modeling Chapter Goal: Introduces the concepts of text summarization, n-gram tagging analysis and topic models to the readers and looks at some real world datasets and hands-on implementations on the same No of pages: 40 - 45 Sub - Topics: 1. Text summarization concepts 2. Dimensionality reduction 3. N-gram tagging models 4. Topic modeling using LDA and LSA 5. Generate topics from real world data 6. N-gram analysis to generate patterns from app reviews Chapter 6: Text Clustering and Similarity analysis Chapter Goal: We look at unsupervised machine learning concepts here like text clustering and similarity measures No of pages: 35 - 40 Sub - Topics: 1. Clustering concepts 2. Analyzing text similarity 3. Implementing text similarity with cosine, jaccard measures 4. Text clustering algorithms 5. Hands on text clustering on real world data Chapter 7: Sentiment Analysis Chapter Goal: We look at solving a popular problem of analyzing sentiment from text using a combination of methods learnt earlier including classification and also lexical analysis No of pages: 35 - 40 Sub - Topics: 1. What is sentiment analysis 2. Looking at lexical corpora for sentiment 3. Analyzing sentiment using lexical analysis (hands-on) 4. Building a sentiment analysis classifier (hands-on)

저자소개

디판잔 사카 (지은이)    정보 더보기
세계 최대의 반도체 회사인 인텔에서 애널리틱스, 비즈니스 인텔리전스, 애플리케이션 개발 업무를 수행하는 IT 엔지니어다. 인도 방갈로르의 국제정보기술공대 IT 학과에서 석사 학위를 받았으며, 소프트웨어 엔지니어링, 데이터 과학, 머신 러닝, 텍스트 애널리틱스가 전문 영역이다. 새로운 기술을 배우는 것을 포함해, 혁신적인 스타트업들과 데이터 과학에 관심을 가지고 있다. 책을 읽고, 게임을 하고, 유명한 시트콤을 보는 것을 좋아한다. 팩트출판사가 펴낸 『Data Analysis with R』, 『Learning R for Geospatial Analysis』, 『R Data Analysis Cookbook』의 감수자이기도 하다.
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책