logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Practical Machine Learning with Python: A Problem-Solver's Guide to Building Real-World Intelligent Systems

Practical Machine Learning with Python: A Problem-Solver's Guide to Building Real-World Intelligent Systems (Paperback)

Tushar Sharma, 러그허브 발리, 디판잔 사카 (지은이)
Apress
147,160원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
120,670원 -18% 0원
6,040원
114,630원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Practical Machine Learning with Python: A Problem-Solver's Guide to Building Real-World Intelligent Systems
eBook 미리보기

책 정보

· 제목 : Practical Machine Learning with Python: A Problem-Solver's Guide to Building Real-World Intelligent Systems (Paperback) 
· 분류 : 외국도서 > 컴퓨터 > 컴퓨터 공학
· ISBN : 9781484232064
· 쪽수 : 530쪽
· 출판일 : 2017-12-22

목차

PART I - Understanding Machine Learning Chapter 1: Machine Learning Basics Chapter Goal: This chapter familiarizes and acquaints readers with the basics of machine learning, industry standard workflows followed for machine learning processes and expands on the different types of machine learning and deep learning algorithms No of pages: 50-60 Sub -Topics 1. Brief on machine learning, definitions and concepts 2. Industry standard for data mining processes - CRISP - DM and adoption in ML 3. Brief on data processing, visualization, feature extraction\engineering concepts 4. Types of learning algorithms - supervised, unsupervised, reinforcement learning 5. Advanced models - time series, deep learning 6. Model building and validation concepts 7. Applications of machine learning Chapter 2: The Python Machine Learning Ecosystem Chapter Go al: This chapter introduces readers to the python language and the entire ecosystem built around machine learning with python tools, frameworks and libraries. Overview and code samples are given for each tool to depict its usage and effectiveness No of pages: 50 - 60 Sub - Topics 1. Brief on Python 2. Why is Python effective for machine learning and data science 3. Brief overview on the python ecosystem followed by data scientists (includes anaconda distribution) 4. Reproducible research with ipython 5. Data processing and computing with pandas, numpy, scipy 6. Statistical learning with statsmodels 7. ML frameworks - scikit-learn, pyml etc 8. NLP frameworks - nltk, pattern, spacy 9. DL frameworks - theano, tensorflow, keras PART II - The Machine Learning Pipeline Chapter 3: Processing, wrangling and visualizing data& amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;Sub - Topics: 1. Data Retrieval mechanisms (crawling, databases, APIs etc) 2. Data processing (handling various forms of data - SQL, JSON, XML, Images) 3. Data attributes and features (numeric, categorical etc) 4. Data Wrangling (cleaning, handling missing values, normalizing data) 5. Data Summarization 6. Data Visualization (bar, histogram, boxplot, line, scatter etc) Chapter 4: Feature Engineering and Selection Chapter Goal: T his chapter focuses on the next stage in the ML pipeline, feature extraction, engineering and selection. Readers will learn about both basic and advanced feature engineering methods for different data formats including numeric, text and images. We will also focus on methods for effective feature selection No of pages: 50 - 60 Sub - Topics: 1. Features - understanding your v2. Basic Feature engineering 3. Extracting features from numeric, categorical variables 4. Extracting features from date imestamp variables 5. Extracting Basic features from textual data (bag of words) 6. Advanced Feature engineering 7. Extracting complex features from textual data (word vectorization, tfidf, topic models) 8. Extracting features from images (pixels, edge detection, shapes) 9. Time series features 10. Feature scaling and standardization 11 Feature se lection techniques 12 Using forwardackward selection techniques 13 Using machine learning models like random forests 14 Other methods Chapter 5: Building, tuning and deploying models Chapter Goal: This chapter focuses on the final stage in the ML pipeline where readers will learn how to fit and build models on data features, how to optimize and tun e models and f learn ways of deploying models to use them in real-world scenarios for predictions\insights No of pages : 50-60 Sub - Topics: 1. Fitting and building models 2. Model evaluation techniques 3. Model optimization methods like gradient descent 4. Model tuning methodologies like cross validation, grid search 5. How to save and load models 6. Deploying models in action PART III - Real-world case studies in applied machine learning Chapt er 6: Analyzing bike sharing trends Chapter Goal: This chapter will focus on a real-world case study of analyzing and predicting bike sharing trends with a focus on regression models No

저자소개

디판잔 사카 (지은이)    정보 더보기
세계 최대의 반도체 회사인 인텔에서 애널리틱스, 비즈니스 인텔리전스, 애플리케이션 개발 업무를 수행하는 IT 엔지니어다. 인도 방갈로르의 국제정보기술공대 IT 학과에서 석사 학위를 받았으며, 소프트웨어 엔지니어링, 데이터 과학, 머신 러닝, 텍스트 애널리틱스가 전문 영역이다. 새로운 기술을 배우는 것을 포함해, 혁신적인 스타트업들과 데이터 과학에 관심을 가지고 있다. 책을 읽고, 게임을 하고, 유명한 시트콤을 보는 것을 좋아한다. 팩트출판사가 펴낸 『Data Analysis with R』, 『Learning R for Geospatial Analysis』, 『R Data Analysis Cookbook』의 감수자이기도 하다.
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책