logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Natural Language Processing Recipes: Unlocking Text Data with Machine Learning and Deep Learning Using Python

Natural Language Processing Recipes: Unlocking Text Data with Machine Learning and Deep Learning Using Python (Paperback)

Akshay Kulkarni, Adarsha Shivananda (지은이)
Apress
80,250원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
알라딘 로딩중
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Natural Language Processing Recipes: Unlocking Text Data with Machine Learning and Deep Learning Using Python
eBook 미리보기

책 정보

· 제목 : Natural Language Processing Recipes: Unlocking Text Data with Machine Learning and Deep Learning Using Python (Paperback) 
· 분류 : 외국도서 > 컴퓨터 > 컴퓨터 공학
· ISBN : 9781484242667
· 쪽수 : 105쪽
· 출판일 : 2019-01-30

목차

Chapter 1: Extracting the data Chapter Goal: Understanding the potential data sources to build natural language processing applications for business benefits and ways to extract the data with examples No of pages: 20 Sub - Topics: 1. Data extraction through API 2. Web scraping 3. Regular expressions 4. Handling strings Chapter 2: Exploring and processing text data Chapter Goal: Data is never clean. This chapter will give in depth knowledge about how to clean and process the text data. It also cover tokenizing and parsing. No of pages: 15 Sub - Topics 1. Text preprocessing methods using python 1. Data cleaning 2. Lexicon normalization 3. Tokenization 4. Parsing and regular expressions 5. Exploratory data analysis Chapter 3: Text to features Chapter Goal: One of the important task with text data is to transform text data into machines or algorithms understandable form, by using different feature engineering methods No of pages: 20 Sub - Topics 1. Feature engineering using python o One hot encoding o Count vectorizer o TF-IDF o Word2vec o N grams Chapter 4: Advanced natural language processing Chapter Goal: A comprehensive understanding of key concepts, methodologies and implementation of natural language processing techniques. No of pages: 40 Sub - Topics: 1. Text similarity 2. Information extraction - NER 3. Topic modeling 4. Machine learning for NLP - a. Text classification b. Sentiment Analysis 5. Deep learning for NLP- a. Seq2seq, b. Sequence prediction using LSTM and RNN 6. Summarizing text Chapter 5: Industrial application with end to end implementation Chapter Goal: Solving real time NLP applications with end to end implementation using python. Right from framing and understanding the business problem to deploying the model. No of pages: 40 Sub - Topics: 1. Consumer complaint classification 2. Customer reviews sentiment prediction 3. Data stitching using text similarity and record linkage 4. Text summarization for subject notes 5. Document clustering 6. Architectural details of Chatbot and Search Engine along with Learning to rank Chapter 6: Deep learning for NLP Chapter Goal: Unlocking the power of deep learning on text data. Solving few real-time applications of deep learning in NLP. No of pages: 40 Sub - Topics: 1. Fundamentals of deep learning 2. Information retrieval using word embedding's 3. Text classification using deep learning approaches (CNN, RNN, LSTM, Bi-directional LSTM) 4. Natural language generation - prediction next word/ sequence of words using LSTM. 5. Text summarization using LSTM encoder and decoder.

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책