logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Functional and Shape Data Analysis

Functional and Shape Data Analysis (Hardcover, 2016)

Anuj Srivastava, Eric P. Klassen (지은이)
Springer
295,830원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
242,580원 -18% 0원
12,130원
230,450원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Functional and Shape Data Analysis
eBook 미리보기

책 정보

· 제목 : Functional and Shape Data Analysis (Hardcover, 2016) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 확률과 통계 > 다변량 분석
· ISBN : 9781493940189
· 쪽수 : 447쪽
· 출판일 : 2016-10-03

목차

'Contents 1 Motivation for Function and Shape Analysis 1.1 Motivation 1.1.1 Need for Function and Shape Data Analysis Tools 1.1.2 Why Continuous Shapes? 1.2 Important Application Areas 1.3 Specific Technical Goals 1.4 Issues & Challenges 1.5 Organization of This Textbook 2 Previous Techniques in Shape Analysis 2.1 Principal Component Analysis (PCA) 2.2 Point-Based Methods 2.2.1 ICP: Point Cloud Analysis 2.2.2 Active Shape Models 2.2.3 Kendall's Landmark-Based Shape Analysis 2.2.4 Issue of Landmark Selection 2.3 Domain-Based Shape Representations 2.3.1 Level-Set Methods 2.3.2 Deformation-Based Shape Analysis 2.4 Exercises 2.5 Bibliographic Notes 3 Background: Relevant Tools from Geometry 3.1 Equivalence Relations 3.2 Riemannian Structure and Geodesics 3.3 Geodesics in Spaces of Curves on Manifolds 3.4 Parallel Transport of Vectors 3.5 Lie Group Actions on Manifolds 3.5.1 Actions of Single Groups 3.5.2 Actions of Product Groups 3.6 Quotient Spaces of Riemannian Manifolds 3.7 Quotient Spaces as Orthogonal Sections 3.8 General Quotient Spaces 3.9 Distances in Quotient Spaces: A Summary 3.10 Center of An Orbit 3.11 Exercises 3.11.1 Theoretical Exercises 3.11.2 Computational Exercises 3.12 Bibliographic Notes 4 Functional Data and Elastic Registration 4.1 Goals and Challenges 4.2 Estimating Function Variables from Discrete Data 4.3 Geometries of Some Function Spaces 4.3.1 Geometry of Hilbert Spaces 4.3.2 Unit Hilbert Sphere 4.3.3 Group of Warping Functions 4.4 Function Registration Problem 4.5 Use of L2-Norm And Its Limitations 4.6 Square-Root Slope Function (SRSF) Representation 4.7 Definition of Phase & Amplitude Components 4.7.1 Amplitude of a Function 4.7.2 Relative Phase Between Functions 4.7.3 A Convenient Approximation 4.8 SRSF-Based Registration 4.8.1 Registration Problem 4.8.2 SRSF Alignment Using Dynamic Programming 4.8.3 Examples of Functional Alignments 4.9 Connection to the Fisher-Rao Metric 4.10 Phase and Amplitude Distances 4.10.1 Amplitude Space and A Metric Structure 4.10.2 Phase Space and A Metric Structure 4.11 Different Warping Actions and PDFs 4.11.1 Listing of Different Actions 4.11.2 Probability Density Functions 4.12 Exercises 4.12.1 Theoretical Exercises 4.12.2 Computational Exercises 4.13 Bibliographic Notes 5 Shapes of Planar Curves 5.1 Goals & Challenges 5.2 Parametric Representations of Curves 5.3 General Framework 5.3.1 Mathematical Representations of Curves 5.3.2 Shape-Preserving Transformations 5.4 Pre-Shape Spaces 5.4.1 Riemannian Structure 5.4.2 Geodesics in Pre-Shape Spaces 5.5 Shape Spaces 5.5.1 Removing Parameterization 5.6 Motivation for SRVF Representation 5.6.1 What is an Elastic Metric? 5.6.2 Significance of the Square-Root Representation 5.7 Geodesic Paths in Shape Spaces 5.7.1 Optimal Re-Parameterization for Curve Matching 5.7.2 Geodesic Illustrations 5.8 Gradient-Based Optimization Over Re-Parameterization Group 5.9 Summary 5.10 Exercises 5.10.1 Theoretical Exercises 5.10.2 Computational Exercises 5.11 Bibliographic Notes 6 Shapes of Planar Closed Curves 6.1 Goals and Challenges 6.2 Representations of Closed Curves 6.2.1 Pre-Shape Spaces 6.2.2 Riemannian Structures 6.2.3 Removing Parameterization 6.3 Projection on a Manifold 6.4 Geodesic Computation 6.5 Geodesic Computation: Shooting Method 6.5.1 Example 1: Geodesics on S2 6.5.2 Example 2: Geodesics in Non-Elastic Pre-Shape Space 6.6 Geodesic Computation: Path Straightening Method 6.6.1 Theoretical Background 6.6.2 Numerical Implementation 6.6.3 Example 1: Geodesics on S2 6.6.4 Example 2: Geodesics in Elastic Pre-Shape Space 6.7 Geodesics in Shape Spaces 6.7.1 Geodesics in Non-Elastic Shape Space 6.7.2 Geodesics in Elastic Shape Space 6.8 Examples of Elastic Geodesics 6.8.1 Elastic Matching: Gradient Versus Dynamic Programming Algorithm 6.8.2 Fast Approximate Elastic Matching of Closed Curves 6.9 Elastic versus Non-Elastic Def

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책