logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Applied Strength of Materials

Applied Strength of Materials (Hardcover, 6)

Robert Mott, Joseph A. Untener (지은이)
  |  
CRC Press
2016-09-27
  |  
49,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
알라딘 49,000원 -0% 0원 980원 48,020원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
로딩중

e-Book

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

해외직구

책 이미지

Applied Strength of Materials

책 정보

· 제목 : Applied Strength of Materials (Hardcover, 6) 
· 분류 : 외국도서 > 과학/수학/생태 > 과학 > 역학 > 역학 일반
· ISBN : 9781498716758
· 쪽수 : 850쪽

목차

Preface

Basic Concepts in Strength of Materials

The Big Picture

Objective of This Book ? To Ensure Safety

Objectives of This Chapter

Problem-solving Procedure

Basic Unit Systems

Relationship Among Mass, Force, and Weight

The Concept of Stress

Direct Normal Stress

Stress Elements for Direct Normal Stresses

The Concept of Strain

Direct Shear Stress

Stress Element for Shear Stresses

Preferred Sizes and Standard Shapes

Experimental and Computational Stress

Design Properties of Materials

The Big Picture

Objectives of This Chapter

Design Properties of Materials

Steel

Cast Iron

Aluminum

Copper, Brass, and Bronze

Zinc, Magnesium, Titanium, and Nickel-Based Alloys

Nonmetals in Engineering Design

Wood

Concrete

Plastics

Composites

Materials Selection

Direct Stress, Deformation, and Design

The Big Picture and Activity

Objectives of this Chapter

Design of Members under Direct Tension or Compression

Design Normal Stresses

Design Factor

Design Approaches and Guidelines for Design Factors

Methods of Computing Design Stress

Elastic Deformation in Tension and Compression Members

Deformation Due to Temperature Changes

Thermal Stress

Members Made of More Than One Material

Stress Concentration Factors for Direct Axial Stresses

Bearing Stress

Design Bearing Stress

Design for Direct Shear, Torsional Shear, and Torsional Deformation

The Big Picture

Objectives of This Chapter

Design for Direct Shear Stress

Torque, Power, and Rotational Speed

Torsional Shear Stress in Members with Circular Cross Sections

Development of the Torsional Shear Stress Formula

Polar Moment of Inertia for Solid Circular Bars

Torsional Shear Stress and Polar Moment of Inertia for Hollow Circular Bars

Design of Circular Members under Torsion

Comparison of Solid and Hollow Circular Members

Stress Concentrations in Torsionally Loaded Members

Twisting ? Elastic Torsional Deformation

Torsion in Noncircular Sections

Shearing Forces and Bending Moments in Beams

The Big Picture

Objectives of this Chapter

Beam Loading, Supports, and Types of Beams

Reactions at Supports

Shearing Forces and Bending Moments for Concentrated Loads

Guidelines for Drawing Beam Diagrams for Concentrated Loads

Shearing Forces and Bending Moments for Distributed Loads

General Shapes Found in Bending Moment Diagrams

Shearing Forces and Bending Moments for Cantilever Beams

Beams with Linearly Varying Distributed Loads

Free-Body Diagrams of Parts of Structures

Mathematical Analysis of Beam Diagrams

Continuous Beams ? Theorem of Three Moments

 

Centroids and Moments of Inertia of Areas

The Big Picture

Objectives of This Chapter

The Concept of Centroid ? Simple Shapes

Centroid of Complex Shapes

The Concept of Moment of Inertia

Moment of Inertia for Composite Shapes Whose Parts have the Same Centroidal Axis

Moment of Inertia for Composite Shapes ? General Case ? Use of the Parallel Axis Theorem

Mathematical Definition of Moment of Inertia

Composite Sections Made from Commercially Available Shapes

Moment of Inertia for Shapes with all Rectangular Parts

Radius of Gyration

Section Modulus

 

Stress Due to Bending

The Big Picture

Objectives of This Chapter

The Flexure Formula

Conditions on the Use of the Flexure Formula

Stress Distribution on a Cross Section of a Beam

Derivation of the Flexure Formula

Applications ? Beam Analysis

Applications ? Beam Design and Design Stresses

Section Modulus and Design Procedures

Stress Concentrations

Flexural Center or Shear Center

Preferred Shapes for Beam Cross Sections

Design of Beams to be Made from Composite Materials

Shearing Stresses in Beams

The Big Picture

Objectives of this Chapter

Importance of Shearing Stresses in Beams

The General Shear Formula

Distribution of Shearing Stress in Beams

Development of the General Shear Formula

Special Shear Formulas

Design for Shear

Shear Flow

Deflection of Beams

The Big Picture

Objectives of this Chapter

The Need for Considering Beam Deflections

General Principles and Definitions of Terms

Beam Deflections Using the Formula Method

Comparison of the Manner of Support for Beams

Superposition Using Deflection Formulas

Successive Integration Method

Moment-Area Method

Combined Stresses

The Big Picture

Objectives of this Chapter

The Stress Element

Stress Distribution Created by Basic Stresses

Creating the Initial Stress Element

Combined Normal Stresses

Combined Normal and Shear Stresses

Equations for Stresses in Any Direction

Maximum Stresses

Mohr’s Circle for Stress

Stress Condition on Selected Planes

Special Case in which Both Principal Stresses have the Same Sign

Use of Strain-Gage Rosettes to Determine Principal Stress Columns

Columns

The Big Picture

Objectives of this Chapter

Slenderness Ratio

Transition Slenderness Ratio

The Euler Formula for Long Columns

The J. B. Johnson Formula for Short Columns

Summary ? Buckling Formulas

Design Factors and Allowable Load

Summary ? Method of Analyzing Columns

Column Analysis Spreadsheet

Efficient Shapes for Columns

Specifications of the AISC

Specifications of the Aluminum Association

Non-Centrally Loaded Columns

Pressure Vessels

The Big Picture

Objectives of this Chapter

Distinction Between Thin-Walled and Thick-Walled Pressure Vessels

Thin-Walled Spheres

Thin-Walled Cylinders

Thick-Walled Cylinders and Spheres

Analysis and Design Procedures for Pressure Vessels

Spreadsheet Aid for Analyzing Thick-Walled Spheres and Cylinders

Shearing Stress in Cylinders and Spheres

Other Design Considerations for Pressure Vessels

Composite Pressure Vessels

Connections

The Big Picture

Objectives of this Chapter

Modes of Failure for Bolted Joints

Design of Bolted Connections

Riveted Joints

Eccentrically Loaded Riveted and Bolted Joints

Welded Joints with Concentric Loads

Appendix

Answers to Selected Problems

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책