logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Big Data and Social Science: A Practical Guide to Methods and Tools

Big Data and Social Science: A Practical Guide to Methods and Tools (Hardcover)

Ian Foster, Julia Lane, Frauke Kreuter, Rayid Ghani, Ron S. Jarmin (엮은이)
Chapman & Hall
89,750원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
알라딘 로딩중
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Big Data and Social Science: A Practical Guide to Methods and Tools
eBook 미리보기

책 정보

· 제목 : Big Data and Social Science: A Practical Guide to Methods and Tools (Hardcover) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 확률과 통계 > 일반
· ISBN : 9781498751407
· 쪽수 : 376쪽
· 출판일 : 2016-08-08

목차

Introduction
Why this book?
Defining big data and its value
Social science, inference, and big data
Social science, data quality, and big data
New tools for new data
The book’s "use case"
The structure of the book
Resources

Capture and Curation
Working with Web Data and APIs

Introduction
Scraping information from the web
New data in the research enterprise
A functional view
Programming against an API
Using the ORCID API via a wrapper
Quality, scope, and management
Integrating data from multiple sources
Working with the graph of relationships
Bringing it together: Tracking pathways to impact
Summary
Resources
Acknowledgements and copyright

Record Linkage
Motivation
Introduction to record linkage
Preprocessing data
Classification
Record linkage and data protection
Summary
Resources

Databases
Introduction
DBMS: When and why
Relational DBMSs
Linking DBMSs and other tools
NoSQL databases
Spatial databases
Which database to use?
Summary
Resources

Programming with Big Data
Introduction
The MapReduce programming model
Apache Hadoop MapReduce
Apache Spark
Summary
Resources

Modeling and Analysis
Machine Learning

Introduction
What is machine learning?
The machine learning process
Problem formulation: Mapping a problem to machine learning methods
Methods
Evaluation
Practical tips
How can social scientists benefit from machine learning?
Advanced topics
Summary
Resources

Text Analysis
Understanding what people write
How to analyze text
Approaches and applications
Evaluation
Text analysis tools
Summary
Resources

Networks: The Basics
Introduction
Network data
Network measures
Comparing collaboration networks
Summary
Resources

Inference and Ethics
Information Visualization
Introduction
Developing effective visualizations
A data-by-tasks taxonomy
Challenges
Summary
Resources

Errors and Inference
Introduction
The total error paradigm
Illustrations of errors in big data
Errors in big data analytics
Some methods for mitigating, detecting, and compensating for errors
Summary
Resources

Privacy and Confidentiality
Introduction
Why is access at all important?
Providing access
The new challenges
Legal and ethical framework
Summary
Resources

Workbooks
Introduction
Environment
Workbook details
Resources

Bibliography

저자소개

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책