logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Maximum Likelihood Estimation with Stata, Fifth Edition

Maximum Likelihood Estimation with Stata, Fifth Edition (Paperback, 5)

William Gould, Jeffrey Pitblado, Brian Poi (지은이)
Stata Press
140,220원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
114,980원 -18% 0원
5,750원
109,230원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Maximum Likelihood Estimation with Stata, Fifth Edition
eBook 미리보기

책 정보

· 제목 : Maximum Likelihood Estimation with Stata, Fifth Edition (Paperback, 5) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 확률과 통계 > 일반
· ISBN : 9781597184113
· 쪽수 : 472쪽
· 출판일 : 2023-11-23

목차

Theory and practice The likelihood-maximization problem Likelihood theory The maximization problem Estimation with mlexp Syntax Normal linear regression Initial values Restricted parameters Robust standard errors The probit model Specifying derivatives Additional estimation features Wrapping up Introduction to ml The probit mode Normal linear regression Robust standard errors Weighted estimation Other features of method-gf0 evaluators Limitations Overview of ml The terminology of ml Equations in ml Likelihood-evaluator methods Tools for the ml programmer Common ml options Maximizing your own likelihood functions Appendix: More about scalar parameters Method lf The linear-form restrictions Examples The importance of generating temporary variables as doubles Problems you can safely ignore Nonlinear specifications The advantages of lf in terms of execution speed Methods lf0, lf1, and lf2 Comparing these methods Outline of evaluators of methods lf0, lf1, and lf2 Summary of methods lf0, lf1, and lf2 Examples Methods d0, d1, and d2 Comparing these methods Outline of method d0, d1, and d2 evaluators Summary of methods d0, d1, and d2 Panel-data likelihoods Other models that do not meet the linear-form restrictions Debugging likelihood evaluators ml check Using the debug methods ml trace Setting initial values ml search ml plot ml init Interactive maximization The iteration log Pressing the Break key Maximizing difficult likelihood functions Final results Graphing convergence Redisplaying output Writing do-files to maximize likelihoods The structure of a do-file Putting the do-file into production Writing ado-files to maximize likelihoods Writing estimation commands The standard estimation-command outline Outline for estimation commands using ml Using ml in noninteractive mode Advice Writing ado-files for survey data analysis Program properties Writing your own predict command Mata-based likelihood evaluators Introductory examples Evaluator function prototypes Utilities Random-effects linear regression Ado-file considerations Mata’s moptimize() function Introductory examples Restricting the estimation sample Estimation preliminaries Estimation Results Estimation commands Regression redux Other examples The logit model The probit model Normal linear regression The Weibull model The Cox proportional hazards model The random-effects regression model The seemingly unrelated regression model A bivariate Poisson regression model Epilogue Syntax of mlexp Syntax of ml Syntax of moptimize() Likelihood-evaluator checklists Method lf Method d0 Method d1 Method d2 Method lf0 Method lf1 Method lf2 Listing of estimation commands The logit model The probit model The normal model The Weibull model The Cox proportional hazards model The random-effects regression model The seemingly unrelated regression model A bivariate Poisson regression model References

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책