logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Explainable Artificial Intelligence: Second World Conference, Xai 2024, Valletta, Malta, July 17-19, 2024, Proceedings, Part II

Explainable Artificial Intelligence: Second World Conference, Xai 2024, Valletta, Malta, July 17-19, 2024, Proceedings, Part II (Paperback, 2024)

Luca Longo, Christin Seifert, Sebastian Lapuschkin (엮은이)
Springer
185,290원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
151,930원 -18% 0원
7,600원
144,330원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
aladin 21,000원 -10% 1050원 17,850원 >

책 이미지

Explainable Artificial Intelligence: Second World Conference, Xai 2024, Valletta, Malta, July 17-19, 2024, Proceedings, Part II
eBook 미리보기

책 정보

· 제목 : Explainable Artificial Intelligence: Second World Conference, Xai 2024, Valletta, Malta, July 17-19, 2024, Proceedings, Part II (Paperback, 2024) 
· 분류 : 외국도서 > 컴퓨터 > 인공지능(AI)
· ISBN : 9783031637964
· 쪽수 : 514쪽
· 출판일 : 2024-07-10

목차

.- XAI for graphs and Computer vision.
.- Model-Agnostic Knowledge Graph Embedding Explanations for Recommender Systems.
.- Graph-Based Interface for Explanations by Examples in Recommender Systems: A User Study.
.- Explainable AI for Mixed Data Clustering.
.- Explaining graph classifiers by unsupervised node relevance attribution.
.- Explaining Clustering of Ecological Momentary Assessment through Temporal and Feature-based Attention.
.- Graph Edits for Counterfactual Explanations: A comparative study.
.- Model guidance via explanations turns image classifiers into segmentation models.
.- Understanding the Dependence of Perception Model Competency on Regions in an Image.
.- A Guided Tour of Post-hoc XAI Techniques in Image Segmentation.
.- Explainable Emotion Decoding for Human and Computer Vision.
.- Explainable concept mappings of MRI: Revealing the mechanisms underlying deep learning-based brain disease classification.
.- Logic, reasoning, and rule-based explainable AI.
.- Template Decision Diagrams for Meta Control and Explainability.
.- A Logic of Weighted Reasons for Explainable Inference in AI.
.- On Explaining and Reasoning about Fiber Optical Link Problems.
.- Construction of artificial most representative trees by minimizing tree-based distance measures.
.- Decision Predicate Graphs: Enhancing Interpretability in Tree Ensembles.
.- Model-agnostic and statistical methods for eXplainable AI.
.- Observation-specific explanations through scattered data approximation.
.- CNN-based explanation ensembling for dataset, representation and explanations evaluation.
.- Local List-wise Explanations of LambdaMART.
.- Sparseness-Optimized Feature Importance.
.- Stabilizing Estimates of Shapley Values with Control Variates.
.- A Guide to Feature Importance Methods for Scientific Inference.
.- Interpretable Machine Learning for TabPFN.
.- Statistics and explainability: a fruitful alliance.
.- How Much Can Stratification Improve the Approximation of Shapley Values?.

저자소개

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책
9791139220223