logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

일간
|
주간
|
월간

실시간 검색어

검색가능 서점

도서목록 제공

Machine Learning Control - Taming Nonlinear Dynamics and Turbulence

Machine Learning Control - Taming Nonlinear Dynamics and Turbulence (Hardcover, 2017)

Thomas Duriez, Steven L. Brunton, Bernd Noack (지은이)
Springer
175,290원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
143,730원 -18% 0원
7,190원
136,540원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Machine Learning Control - Taming Nonlinear Dynamics and Turbulence
eBook 미리보기

책 정보

· 제목 : Machine Learning Control - Taming Nonlinear Dynamics and Turbulence (Hardcover, 2017) 
· 분류 : 외국도서 > 기술공학 > 기술공학 > 기계공학
· ISBN : 9783319406237
· 쪽수 : 211쪽
· 출판일 : 2016-11-15

목차

Preface.- 1 Introduction.- 1.1 Feedback in engineering and living systems.- 1.2 Benefits of feedback control.- 1.3 Challenges of feedback control.- 1.4 Feedback turbulence control is a grand challenge problem.- 1.5 Nature teaches us the control design.- 1.6 Outline of the book.- 1.7 Exercises.- 2 Machine learning control (MLC).- 2.1 Methods of machine learning.- 2.2 MLC with genetic programming.- 2.3 Examples.- 2.4 Exercises.- 2.5 Suggested reading.- 2.6 Interview with Professor Marc Schoenauer.- 3 Methods of linear control theory.- 3.1 Linear systems.- 3.2 Full-state feedback.- Linear quadratic regulator (LQR).- 3.3 Sensor-based state estimation.- Kalman filtering.- 3.4 Sensor-based feedback.- Linear quadratic Gaussian (LQG).- 3.5 System Identification and Model Reduction.- 3.6 Exercises.- 3.7 Suggested reading.- 4 Benchmarking MLC against linear control.- 4.1 Comparison of MLC with LQR on a linear oscillator.- 4.2 Comparison of MLC with Kalman filter on a noisy linear oscillator.- 4.3 Comparison of MLC with LQG for sensor-based feedback.- 4.4 Modifications for small nonlinearity.- 4.5 Exercises.- 4.6 Interview with Professor Shervin Bagheri.- 5 Taming nonlinear dynamics with MLC.- 5.1 Generalized mean-field system.- 5.2 Machine learning control.- 5.3 Derivation outline for the generalized mean-field model.- 5.4 Alternative control approaches.- 5.5 Exercises.- 5.6 Suggested reading.- 5.7 Interview with Professor Mark N. Glauser.- 6 Taming real world flow control experiments with MLC.- 6.1 Separation control over a backward-facing step.- 6.2 Separation control of turbulent boundary layers.- 6.3 Control of mixing layer growth.- 6.4 Alternative model-based control approaches.- 6.5 Implementation of MLC in experiments.- 6.6 Suggested reading.- 6.7 Interview with Professor David Williams.- 7 MLC tactics and strategy.- 7.1 The ideal flow control experiment.- 7.2 Desiderata of the control problem - from the definition to hardware choices.- 7.3 Time scales of MLC.- 7.4 MLC parameters and convergence.- 7.5 The imperfect experiment.- 8 Future developments.- 8.1 Methodological advances of MLC.- 8.2 System-reduction techniques for MLC - Coping with high-dimensional input and output.- 8.3 Future applications of MLC.- 8.4 Exercises.- 8.5 Interview with Professor Belinda Batten.- Glossary.- Symbols.- Abbreviations.- Matlab® Code: OpenMLC.- Bibliography.- Index.

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책