logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

The Theory of Laser Materials Processing: Heat and Mass Transfer in Modern Technology

The Theory of Laser Materials Processing: Heat and Mass Transfer in Modern Technology (Hardcover, 2, 2017)

슐츠 (Wolfgang Schulz), John Dowden (엮은이)
Springer International Publishing AG
565,470원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
463,680원 -18% 0원
23,190원
440,490원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

The Theory of Laser Materials Processing: Heat and Mass Transfer in Modern Technology
eBook 미리보기

책 정보

· 제목 : The Theory of Laser Materials Processing: Heat and Mass Transfer in Modern Technology (Hardcover, 2, 2017) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 응용수학
· ISBN : 9783319567105
· 쪽수 : 432쪽
· 출판일 : 2017-07-03

목차

1 Mathematics in Laser Processing; John Dowden. 1.1 Mathematics and its Application. 1.2 Formulation in Terms of Partial Differential Equations. 1.3 Boundary and Interface Conditions. 1.4 Fick's Laws. 1.5 Electromagnetism. 2 Simulation of Laser Cutting; Wolfgang Schulz, Markus Nießen, Urs Eppelt and Kerstin Kowalick. 2.1 Introduction. 2.2 Mathematical Formulation and Analysis. 2.3 Outlook. 2.4 Acknowledgements. 3 Glass Cutting; Wolfgang Schulz. 3.1 Introduction. 3.2 Phenomenology of Glass Processing with Ultrashort Laser Radiation. 3.3 Modelling the Propagation of Radiation and the Dynamics of Electron Density. 3.4 Radiation Propagation Solved by BPM Methods. 3.5 The Dynamics of Electron Density Described by Rate Equations. 3.6 Properties of the Solution with Regard to Ablation and Damage. 3.7 Electronic Damage versus Thermal Damage. 3.8 Glass Cutting by Direct Ablation or Filamentation?. 3.9 Acknowledgements. 4 Keyhole Welding: the Solid and Liquid Phases ; Alexander Kaplan. 4.1 Heat Generation and Heat Transfer. 4.2 Melt Flow. 5 Laser Keyhole Welding: The Vapour Phase; John Dowden. 5.1 Notation. 5.2 The Keyhole. 5.3 The Keyhole Wall. 5.4 The Role of Convection in the Transfer of Energy to the Keyhole Wall. 5.5 Fluid Flow in the Keyhole. 5.6 Further Aspects of Fluid Flow. 5.7 Electromagnetic Effects. 6 Basic Concepts of Laser Drilling; Wolfgang Schulz and Urs Eppelt. 6.1 Introduction. 6.2 Technology and Laser Systems. 6.3 Diagnostics and Monitoring for s Pulse Drilling. 6.4 Phenomena of Beam-Matter Interaction. 6.5 Phenomena of the Melt Expulsion Domain. 6.6 Mathematical Formulation of Reduced Models. 6.7 Analysis. 6.8 Outlook. 6.9 Acknowledgements 7 Arc Welding and Hybrid Laser-Arc Welding; Ian Richardson. 7.1 The Structure of the Welding Arc. 7.2 The Arc Electrodes. 7.3 Fluid Flow in the Arc-Generated Weld Pool . 7.4 Unified Arc and Electrode Models. 7.5 Arc Plasma-Laser Interactions. 7.6 Laser-Arc Hybrid Welding. 8 Metallurgy and Imperfections of Welding and Hardening; Alexander Kaplan. 8.1 Thermal Cycle and Cooling Rate. 8.2 Resolidification. 8.3 Metallurgy. 8.4 Imperfections. 9 Laser Cladding; Frank Bruckner and Dietrich Lepski. 9.1 Introduction. 9.2 Beam-Particle Interaction. 9.3 Formation of the Weld Bead. 9.4 Thermal Stress and Distortion. 9.5 Conclusions and Future Work. 10 Laser Forming; Thomas Pretorius. 10.1 History of Thermal Forming. 10.2 Forming Mechanisms. 10.3 Applications. 11 Femtosecond Laser Pulse Interactions with Metals; Bernd Huttner. 11.1. Introduction. 11.2. What is Different Compared to Longer Pulses? 11.3. Material Properties under Exposure to Femtosecond Laser Pulses. 11.4. Determination of the Electron and Phonon Temperature Distribution. 11.5. Summary and Conclusions. 12 Meta-Modelling and Visualisation of Multi-Dimensional Data for Virtual Production Intelligence; Wolfgang Schulz. 12.1 Introduction. 12.2 Implementing Virtual Production Intelligence. 12.3 Meta-Modelling Providing Operative Design Tools. 12.4 Meta-Modelling by Smart Sampling with Discontinuous Response. 12.5 Global Sensitivity Analysis and Variance Decomposition. 12.6 Reduced Models and Emulators. 12.7 Summary and Advances in Meta-Modelling. 13 Comprehensive Numerical Simulation of Laser Materials Processing; Markus Gross. 13.1 Motivation - The Pursuit of Ultimate Understanding. 13.2 Review. 13.3 Correlation, the Full Picture. 13.4 Introduction to Numerical Techniques. 13.5 Solution of the Energy Equation and Phase Changes. 13.6 Program Development and Best Practice when Using Analysis Tools. 13.7 Introduction to High Performance Computing. 13.8 Visualisation Tools. 13.9 Summary and Concluding Remarks. Index.

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책