logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Foundations of the Classical Theory of Partial Differential Equations

Foundations of the Classical Theory of Partial Differential Equations (Paperback, 1998)

M. A. Shubin, IU. V. Egorov (엮은이)
Springer Verlag
99,980원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
81,980원 -18% 0원
4,100원
77,880원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Foundations of the Classical Theory of Partial Differential Equations
eBook 미리보기

책 정보

· 제목 : Foundations of the Classical Theory of Partial Differential Equations (Paperback, 1998) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 미분방정식 > 편미분방정식
· ISBN : 9783540638254
· 쪽수 : 259쪽
· 출판일 : 1998-03-17

목차

1. Basic Concepts.- 1. Basic Definitions and Examples.- 1.1. The Definition of a Linear Partial Differential Equation.- 1.2. The Role of Partial Differential Equations in the Mathematical Modeling of Physical Processes.- 1.3. Derivation of the Equation for the Longitudinal Elastic Vibrations of a Rod.- 1.4. Derivation of the Equation of Heat Conduction.- 1.5. The Limits of Applicability of Mathematical Models.- 1.6. Initial and Boundary Conditions.- 1.7. Examples of Linear Partial Differential Equations.- 1.8. The Concept of Well-Posedness of a Boundary-value Problem. The Cauchy Problem.- 2. The Cauchy-Kovalevskaya Theorem and Its Generalizations.- 2.1. The Cauchy-Kovalevskaya Theorem.- 2.2. An Example of Nonexistence of an Analytic Solution.- 2.3. Some Generalizations of the Cauchy-Kovalevskaya Theorem. Characteristics.- 2.4. Ovsyannikov's Theorem.- 2.5. Holmgren's Theorem.- 3. Classification of Linear Differential Equations. Reduction to Canonical Form and Characteristics.- 3.1. Classification of Second-Order Equations and Their Reduction to Canonical Form at a Point.- 3.2. Characteristics of Second-Order Equations and Reduction to Canonical Form of Second-Order Equations with Two Independent Variables.- 3.3. Ellipticity, Hyperbolicity, and Parabolicity for General Linear Differential Equations and Systems.- 3.4. Characteristics as Solutions of the Hamilton-Jacobi Equation.- 2. The Classical Theory.- 1. Distributions and Equations with Constant Coefficients.- 1.1. The Concept of a Distribution.- 1.2. The Spaces of Test Functions and Distributions.- 1.3. The Topology in the Space of Distributions.- 1.4. The Support of a Distribution. The General Form of Distributions.- 1.5. Differentiation of Distributions.- 1.6. Multiplication of a Distribution by a Smooth Function. Linear Differential Operators in Spaces of Distributions.- 1.7. Change of Variables and Homogeneous Distributions.- 1.8. The Direct or Tensor Product of Distributions.- 1.9. The Convolution of Distributions.- 1.10. The Fourier Transform of Tempered Distributions.- 1.11. The Schwartz Kernel of a Linear Operator.- 1.12. Fundamental Solutions for Operators with Constant Coefficients.- 1.13. A Fundamental Solution for the Cauchy Problem.- 1.14. Fundamental Solutions and Solutions of Inhomogeneous Equations.- 1.15. Duhamel's Principle for Equations with Constant Coefficients.- 1.16. The Fundamental Solution and the Behavior of Solutions at Infinity.- 1.17. Local Properties of Solutions of Homogeneous Equations with Constant Coefficients. Hypoellipticity and Ellipticity.- 1.18. Liouville's Theorem for Equations with Constant Coefficients.- 1.19. Isolated Singularities of Solutions of Hypoelliptic Equations.- 2. Elliptic Equations and Boundary-Value Problems.- 2.1. The Definition of Ellipticity. The Laplace and Poisson Equations.- 2.2. A Fundamental Solution for the Laplacian Operator. Green's Formula.- 2.3. Mean-Value Theorems for Harmonic Functions.- 2.4. The Maximum Principle for Harmonic Functions and the Normal Derivative Lemma.- 2.5. Uniqueness of the Classical Solutions of the Dirichlet and Neumann Problems for Laplace's Equation.- 2.6. Internal A Priori Estimates for Harmonic Functions. Harnack's Theorem.- 2.7. The Green's Function of the Dirichlet Problem for Laplace's Equation.- 2.8. The Green's Function and the Solution of the Dirichlet Problem for a Ball and a Half-Space. The Reflection Principle.- 2.9. Harnack's Inequality and Liouville's Theorem.- 2.10. The Removable Singularities Theorem.- 2.11. The Kelvin Transform and the Statement of Exterior Boundary-Value Problems for Laplace's Equation.- 2.12. Potentials.- 2.13. Application of Potentials to the Solution of Boundary-Value Problems.- 2.14. Boundary-Value Problems for Poisson's Equation in Holder Spaces. Schauder Estimates.- 2.15. Capacity.- 2.16. The Dirichlet Problem in the Case of Arbitrary Regions (The Method of Balayage). Regularity of a Boundary Point. The Wiener Regularity Criterion.- 2.17.

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책