책 이미지

책 정보
· 분류 : 외국도서 > 과학/수학/생태 > 과학 > 물리학 > 응집물질
· ISBN : 9783764364861
· 쪽수 : 384쪽
· 출판일 : 2000-12-01
목차
1 Introduction.- 1.1 Brief history.- 1.1.1 Meissner effect - diamagnetism.- 1.1.2 The London equation and the penetration depth.- 1.1.3 The coherence length.- 1.1.4 Classification of superconductors.- 1.1.5 Vortices.- 1.1.6 Summary.- 1.2 The G-L phenomenological theory.- 1.2.1 The free energy and the G-L equations.- 1.2.2 Rescaling and the values of the constants.- 1.2.3 Gauge invariance.- 1.3 Some considerations arising from scaling.- 1.3.1 The two characteristic lengths ?(T) and A(T).- 1.3.2 The validity of the G-L theory.- 1.4 The evolutionary G-L system - 2-d case.- 1.4.1 The system.- 1.4.2 Mathematical scaling.- 1.4.3 The G-L functional as a Lyapunov functional.- 1.4.4 Gauge invariance.- 1.4.5 A uniform bound on ? .- 1.5 Exterior evolutionary Maxwell system.- 1.5.1 Review of the Maxwell system.- 1.5.2 The G-L superconductivity model.- 1.5.3 The setting of the problem.- 1.6 Exterior steady-state Maxwell system.- 1.7 Surface energy, superconductor classification.- 1.7.1 The sign of ?ns when ? ? 1.- 1.7.2 The sign of ?ns when ? ? 1.- 1.7.3 The case $$\mathcal{K} = 1/\sqrt 2 $$.- 1.7.4 Conclusion.- 1.8 Difference between 2-d and 3-d models.- 1.9 Bibliographical remarks.- 2 Mathematical Foundation.- 2.1 Co-dimension one phase transition problems.- 2.1.1 Steady state problems.- 2.1.2 Evolutionary problems.- 2.1.3 Long time behaviour.- 2.2 Co-dimension two phase transition problems.- 2.2.1 Steady state problems on bounded domains.- 2.2.2 Steady state problems on ?2.- 2.2.3 Evolutionary problems.- 2.2.4 Long time behaviour.- 2.3 Mathematical description of vortices in ?2.- 2.4 Asymptotic methods for describing vortices in ?2.- 2.4.1 Steady state case in ?2.- 2.4.2 Evolutionary case in ?2 - Introduction-.- 2.4.3 Evolutionary case in ?2 - far field expansion:.- 2.4.4 Evolutionary case in ?2 - local structure of the far fieldsolution near a vortex.- 2.4.5 Evolutionary case in ?2 - Core expansion.- 2.4.6 Evolutionary case in ?2 - Matching of the core and far fieldexpansions.- 2.4.7 Vortex motion equation.- 2.5 Asymptotic methods for describing vortices in ?3.- 2.5.1 Steady state case in ?3.- 2.5.2 Evolutionary case in ?3.- 2.6 Bibliographical remarks.- 3 Asymptotics Involving Magnetic Potential.- 3.1 Basic facts concerning fluid vortices.- 3.2 Asymptotic analysis.- 3.2.1 2-D steady state case.- 3.2.2 Evolutionary case.- 3.2.3 Far field.- 3.2.4 Core region.- 3.3 Asymptotic analysis of densely packed vortices.- 3.3.1 Outer region - a mean field model.- 3.3.2 Intermediate region.- 3.3.3 Core region.- 3.4 Bibliographical remarks.- 4 Steady State Solutions.- 4.1 Existence of steady state solutions.- 4.1.1 The outside field is a given function, 2-d case.- 4.1.2 The outside field is governed by the Maxwell system, 3-d case.- 4.2 Stability and mapping properties of solutions.- 4.2.1 Non-existence of local maxima.- 4.2.2 Boundedness of the order parameter.- 4.2.3 Constant solutions and mixed state solutions.- 4.3 Co-dimension two vortex domain.- 4.4 Breakdown of superconductivity.- 4.5 A linearized problem.- 4.6 Bibliographical remarks.- 5 Evolutionary Solutions.- 5.1 2-d solutions with given external field.- 5.1.1 Mathematical setting.- 5.1.2 Existence and uniqueness of solutions.- 5.1.3 Proof of Theorem 1.2.- 5.1.4 Proof of Theorem 1.1.- 5.2 Existence of 3-d evolutionary solutions.- 5.3 The existence of an ?-limit set as t ? ?.- 5.4 An abstract theorem on global attractors.- 5.5 Global atractor for the G-L sstem.- 5.6 Physical bounds on the global attractor.- 5.7 The uniqueness of the long time limit of the evolutionary G-L so-lutions.- 5.8 Bibliographical remarks.- 6 Complex G-L Type Phase Transition Theory.- 6.1 Existence and basic properties of solutions.- 6.2 BBH type upper bound for energy of minimizers.- 6.3 Global estimates.- 6.4 Local estimates.- 6.5 The behaviour of solutions near vortices.- 6.6 Global ?-independent estimates.- 6.7 Convergence of the solutions as ? ? 0.- 6.8 Main results on the limit functions.- 6.9 Renormalize