logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

실전! 파이토치 딥러닝 프로젝트

실전! 파이토치 딥러닝 프로젝트

(기본 아키텍처부터 글쓰기/작곡, 스타일 전이, 게임, 클라우드와 분산 훈련까지)

아쉬쉬 란잔 자 (지은이), 김정인 (옮긴이)
위키북스
32,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
28,800원 -10% 0원
1,600원
27,200원 >
yes24 로딩중
교보문고 로딩중
11st 로딩중
영풍문고 로딩중
쿠팡 로딩중
쿠팡로켓 로딩중
G마켓 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
aladin 25,600원 -10% 1280원 21,760원 >

책 이미지

실전! 파이토치 딥러닝 프로젝트
eBook 미리보기

책 정보

· 제목 : 실전! 파이토치 딥러닝 프로젝트 (기본 아키텍처부터 글쓰기/작곡, 스타일 전이, 게임, 클라우드와 분산 훈련까지)
· 분류 : 국내도서 > 컴퓨터/모바일 > 컴퓨터 공학 > 자료구조/알고리즘
· ISBN : 9791158393052
· 쪽수 : 416쪽
· 출판일 : 2022-02-16

책 소개

파이토치(PyTorch)를 활용하면 누구나, 그 어느 때보다 쉽게 딥러닝 애플리케이션을 구축해 AI 혁명에 동참할 수 있다. 이 책은 여러분이 가진 데이터를 최대한 활용해 복잡한 신경망 모델을 구축하는 전문 기술을 익히는 데 도움이 될 것이다.

목차

[01부] 파이토치 개요

▣ 01장: 파이토치를 이용한 딥러닝 소개
딥러닝 되짚어보기
___활성화 함수
___최적화 스케줄
파이토치 살펴보기
___파이토치 모듈
___텐서 모듈
파이토치로 신경망 훈련하기
요약

▣ 02장: CNN과 LSTM 결합하기
CNN과 LSTM으로 신경망 만들기
___텍스트 인코딩 데모
파이토치로 이미지 캡션 생성하기
___이미지 캡션 데이터셋 다운로드
___캡션(텍스트) 데이터 전처리
___이미지 데이터 전처리
___이미지 캡션 데이터 로더 정의하기
___CNN-LSTM 모델 정의하기
___CNN-LSTM 모델 훈련하기
___훈련된 모델로 이미지 캡션 생성하기
요약

[02부] 고급 신경망 아키텍처

▣ 03장: 심층 CNN 아키텍처
왜 CNN이 막강한가?
CNN 아키텍처의 발전
LeNet을 처음부터 구현하기
___파이토치로 LeNet 구성하기
___LeNet 훈련하기
___LeNet 테스트하기
AlexNet 모델 미세 조정하기
___파이토치로 AlexNet 미세 조정하기
사전 훈련된 VGG 모델 실행하기
GoogLeNet과 Inception v3 살펴보기
___Inception 모듈
___1×1 합성곱
___전역 평균 풀링
___보조 분류기
___Inception v3
ResNet과 DenseNet 아키텍처
___DenseNet
EfficientNet과 CNN 아키텍처의 미래
요약

▣ 04장: 심층 순환 신경망 아키텍처
순환 신경망의 발전
순환 신경망 유형
___RNN
___양방향 RNN
___LSTM
___확장된 LSTM과 양방향 LSTM
___다차원 RNN
적층 LSTM
___GRU
___그리드 LSTM
___게이트 직교 순환 유닛
감성 분석을 위해 RNN 훈련하기
___텍스트 데이터셋 로딩 및 전처리
___모델 인스턴스화 및 훈련
양방향 LSTM 만들기
___텍스트 데이터셋 로딩과 전처리
___LSTM 모델 인스턴스화 및 훈련
GRU와 어텐션 기반 모델
___GRU와 파이토치
___어텐션 기반 모델
요약

▣ 05장: 하이브리드 고급 모델
언어 모델링을 위한 트랜스포머 모델 만들기
언어 모델링
___트랜스포머 모델 아키텍처
RandWireNN 모델 구현
___RandWireNN 모델의 이해
___파이토치로 RandWireNN 개발
요약

[03부] 생성 모델과 심층 강화학습

▣ 06장: 파이토치를 활용한 음악, 텍스트 생성
파이토치로 트랜스포머 기반 텍스트 생성기 만들기
___트랜스포머 기반 언어 모델 훈련
___언어 모델 저장 및 로딩
___언어 모델로 텍스트 생성하기
텍스트 생성기로 사전 훈련된 GPT-2 사용하기
___GPT-2로 바로 사용할 수 있는 텍스트 생성기 구현하기
___파이토치를 사용한 텍스트 생성 전략
파이토치에서 LSTM으로 미디 음악 생성하기
___미디 음악 데이터 로딩
___LSTM 모델 정의 및 훈련 방법
___음악 생성 모델 훈련 및 테스트
요약

▣ 07장: 신경망 스타일 전이
이미지 간 스타일 전이하는 방법
파이토치에서 신경망을 이용한 스타일 전이 구현하기
___콘텐츠와 스타일 이미지 로딩
___사전 훈련된 VGG19 모델 로딩 및 조정
___신경망 스타일 전이 모델 구축
___스타일 전이 모델 훈련
___스타일 전이 모델 실험
요약

▣ 08장: 심층 합성곱 GAN
생성 네트워크와 판별 네트워크 정의
___DCGAN 생성 모델과 판별 모델
파이토치로 DCGAN 훈련하기
___생성 모델 정의
___이미지 데이터셋 로딩
___DCGAN 훈련 루프
GAN을 이용한 스타일 전이
___pix2pix 아키텍처
요약

▣ 09장: 심층 강화학습
강화학습 개념
___강화학습 알고리즘 유형
Q-러닝
심층 Q-러닝
___두 개의 분리된 DNN 사용
___경험 재현 버퍼
파이토치에서 DQN 모델 만들기
___메인 CNN 모델과 타깃 CNN 모델 초기화
___경험 재현 버퍼 정의
___환경 설정
___CNN 최적화 함수 정의
___에피소드 관리 및 실행
___퐁 게임을 위한 DQN 모델 훈련
요약

[04부] 운영 시스템에서의 파이토치

▣ 10장: 파이토치 모델을 운영 환경에 이관하기
파이토치에서 모델 서빙
___파이토치 모델 추론 파이프라인 생성
___기본적인 모델 서버 구축
___모델 마이크로서비스 생성
토치서브를 활용한 파이토치 모델 서빙
___토치서브 서버 실행 및 사용
토치스크립트와 ONNX를 활용해 범용 파이토치 모델 내보내기
___토치스크립트의 유틸리티
___토치스크립트로 모델 추적하기
___토치스크립트로 모델 스크립팅
___C++에서 파이토치 모델 실행하기
___ONNX를 이용해 파이토치 모델 내보내기
클라우드에서 파이토치 모델 서빙
___AWS에서 파이토치 사용하기
___구글 클라우드에서 파이토치 모델 서빙
___애저에서 파이토치 모델 서빙
요약
참고 문헌

▣ 11장: 분산 훈련
파이토치를 이용한 분산 훈련
___일반 방식의 MNIST 모델 훈련
___분산 방식의 MNIST 모델 훈련
CUDA로 GPU상에서 분산 훈련
요약

▣ 12장: 파이토치와 AutoML
AutoML로 최적의 신경망 아키텍처 찾기
___Auto-PyTorch로 최적의 MNIST 모델 찾기
Optuna로 초매개변수 찾기
___모델 아키텍처 정의 및 데이터셋 로딩
___모델 훈련 방식과 최적화 스케줄 정의
___Optuna의 초매개변수 탐색 실행
요약

▣ 13장: 파이토치와 설명 가능한 AI
파이토치에서 모델 해석 가능성
___필기체 숫자 분류 모델 훈련 - 복습
___모델의 합성곱 필터 시각화
___모델의 특징 맵 시각화
Captum을 이용한 모델 해석
___Captum 설정
___Captum의 해석 도구
요약

▣ 14장: 파이토치로 빠르게 프로토타이핑하기
fast.ai를 이용해 몇 분 안에 모델 훈련 설정하기
___fast.ai를 설정하고 데이터 로딩하기
___fast.ai를 이용한 MNIST 모델 훈련
___fast.ai를 이용한 모델 평가 및 해석
파이토치 라이트닝을 이용한 모델 훈련
___파이토치 라이트닝에서 모델 구성 요소 정의
___파이토치 라이트닝을 이용한 모델 훈련 및 평가
요약

저자소개

아쉬쉬 란잔 자 (지은이)    정보 더보기
인도 IIT 루르키(IIT Roorkee) 전기공학부에서 학사를 마치고, 스위스 EPFL에서 컴퓨터 과학 석사 학위를 받고 미국 워싱턴에 위치한 Quantic School of Business에서 MBA를 마쳤다. 그는 모든 학위 과정을 우수한 성적으로 마쳤다. 그는 오라클, 소니, 레볼루트 같은 스타트업에서 머신러닝 엔지니어로 근무했다. 수년간의 경력 외에, 아쉬쉬는 프리랜서 머신러닝 컨설턴트, 저자, 블로거(datashines)로 활동 중이다. 그는 센서 데이터로 차량 유형을 예측하는 것부터 보험 청구 내역에서 사기를 탐지하는 것까지 다양한 프로젝트를 수행했다. 여가 시간에는 오픈소스 ML 프로젝트를 하고 스택오버플로(StackOverflow)와 캐글(Kaggle)에서 활동하고 있다(arj7192).
펼치기
김정인 (옮긴이)    정보 더보기
플랫폼 기업의 빅데이터 서비스 조직에서 근무하고 있다. 업계 용어 중심으로 쓰면 나태하게 보일까 걱정되고, 모두 우리말로 바꾸자니 전문가들과 소통이 어렵지는 않을까 하는 걱정 사이에, 이제는 어떻게 하면 챗GPT보다 더 나은 가치를 제공할 수 있는지까지 고민을 하나 더 얹어 번역하고 있다. 이런 고민을 책 문장마다 잘 녹여내기 바라며 옮기지만, 그에 대한 인정은 독자들 몫이니 마음을 내려놓는 연습도 하고 있다. 옮긴 책으로는 《파이썬 데이터 사이언스 핸드북(개정판)》, 《실전! 파이토치 딥러닝 프로젝트》, 《강화학습/심층강화학습 특강》, 《실전! 텐서플로 2를 활용한 딥러닝 컴퓨터 비전》 등이 있다.
펼치기

책속에서



이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책
9791158394479