책 이미지

책 정보
· 분류 : 국내도서 > 컴퓨터/모바일 > 컴퓨터 공학 > 자료구조/알고리즘
· ISBN : 9791160503760
· 쪽수 : 300쪽
· 출판일 : 2017-12-28
책 소개
목차
1장 이 책의 개요와 준비
1.1 이 책의 구성
__딥러닝의 성과
__이 책에서 학습하는 내용 : 이미지의 클래스 분류, 물체 검출, 강화 학습
__이 책에서 다루는 기법 : 사전 학습된 모델의 이용
1.2 이 책에서 사용하는 데이터셋
1.3 사용하는 기기와 소프트웨어
__사용하는 프레임워크
__GPU의 이용
__사용하는 기기 : 게임용 PC
__OS 및 미들웨어
1.4 소프트웨어 설치
__OS 설치
__미들웨어 설치
1.5 예제 파일 내려받기
__파일 내려받기
__내려받은 파일의 압축 풀기
2장. 네트워크의 구성
2.1 순전파형 네트워크
__전결합 신경망
__합성곱 신경망(CNN)
2.2 합성곱 신경망
__합성곱층
__풀링층
__업샘플링층
2.3 이 책에서 사용하는 네트워크 패턴
3장 기본 용어
3.1 딥러닝의 처리 개요
3.2 활성화 함수
3.3 손실 문제
3.4 확률적 경사 하강법
__가중치 업데이트의 계산 예
__모멘텀
3.5 오차역전파법
3.6 과학습
__밸리데이션 데이터셋을 사용한 에폭 수 결정
__정규화
__드롭아웃
3.7 데이터 확장과 전처리
3.8 사전 학습된 모델
3.9 학습 계수 조정
4장. 이미지 클래스의 분류
4.1 개요
4.2 공통 데이터의 구축
__이미지 데이터셋 내려받기
__데이터 추출과 기본 데이터셋의 구축
__데이터 확장과 공통 데이터셋의 구축
4.3 9층의 네트워크로 클래스 분류
__네트워크의 개요
__학습과 모델 만들기
__모델 읽기와 예측 실행
__실행
4.4 VGG-16으로 클래스 분류 : 16층의 사전 학습된 모델
__VGG-16의 개요
__프로그램의 개요
__실행
4.5 ResNet-152로 클래스 분류 : 152층의 사전 학습된 모델
__ResNet의 개요
__실행 환경 설치
__프로그램의 개요
__실행
4.6 예측 정확도 더 향상시키기
__개요
__복수 모델 사용
__2단계 일반화
__자기 학습
5장. 물체 검출
5.1 물체의 위치 검출 : 26층의 네트워크
__물체의 위치와 크기, 종류 예측
__사용하는 소프트웨어의 특성
__실행 환경 설치
__사전 학습된 모델을 이용하여 물체 검출
__오브젝트를 학습하여 물체 검출
5.2 물체의 형태 검출 : 23층의 네트워크
__물체의 위치와 크기, 형태 예측
__사용하는 모델과 특성
__프로그램의 개요
__실행 예
6장. 강화 학습 : 삼목 게임에 강한 컴퓨터 키우기
6.1 강화 학습
__강화 학습의 개요
__Q 러닝
__DQN
6.2 기본 틀
__환경과 에이전트
__실행 개요
__환경 규칙
6.3 실행 환경의 설치
6.4 Q 러닝과 딥러닝
6.5 실행 사례
부록
A Yolo용 오브젝트의 위치 정보를 만드는 방법
__BBox-Label-Tool 설치
__오브젝트의 위치 정보 만들기
B 주요 예제 소스
__4장에서 사용한 예제 소스
__5장에서 사용한 예제 소스
__6장에서 사용한 예제 소스