logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

자동머신러닝

자동머신러닝

(AutoML 창시자가 알려주는, 2022년 대한민국학술원 우수학술도서 선정도서)

프랭크 허터, 라스 코토프, 호아킨 반쇼렌 (지은이), 이기홍 (옮긴이)
에이콘출판
30,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
27,000원 -10% 0원
1,500원
25,500원 >
27,000원 -10% 0원
0원
27,000원 >
yes24 로딩중
교보문고 로딩중
11st 로딩중
영풍문고 로딩중
쿠팡 로딩중
쿠팡로켓 로딩중
G마켓 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

자동머신러닝
eBook 미리보기

책 정보

· 제목 : 자동머신러닝 (AutoML 창시자가 알려주는, 2022년 대한민국학술원 우수학술도서 선정도서)
· 분류 : 국내도서 > 컴퓨터/모바일 > 컴퓨터 공학 > 자료구조/알고리즘
· ISBN : 9791161755960
· 쪽수 : 380쪽
· 출판일 : 2021-12-31

책 소개

머신러닝과 딥러닝의 민주화라는 모토하에 자동머신러닝이 급속히 발전하고 있다. 이 책은 자동머신러닝의 이론적 기반과 이를 구현하는 시스템의 작동 원리를 자동머신러닝의 창시자들이 제공하고 있다.

목차

1부. AutoML 방법

1장. 하이퍼파라미터 최적화
1.1 서론
1.2 문제 기술
1.2.1 최적화에 대한 대안: 앙상블과 한계화
1.2.2 다중 목적에 대한 최적화
1.3 블랙박스 하이퍼파라미터 최적화
1.3.1 모델 프리 블랙박스 최적화 방법
1.3.2 베이지안 최적화
1.4 다중 충실도 최적화
1.4.1 조기 종료를 위한 학습 곡선 기반의 예측
1.4.2 밴딧 기반 알고리듬 선택 방법
1.4.3 충실도의 적응적 선택
1.5 AutoML에의 응용
1.6 미해결 문제와 미래 연구 방향
1.6.1 벤치마크와 비교 가능성
1.6.2 그래디언트 기반 최적화
1.6.3 확장성
1.6.4 과적합과 일반화
1.6.5 임의 크기의 파이프라인 구축

2장. 메타러닝
2.1 서론
2.2 모델 평가로부터 학습
2.2.1 작업 독립 권장
2.2.2 설정 공간 설계
2.2.3 설정 전이
2.2.4 학습 곡선
2.3 작업 속성으로부터 학습
2.3.1 메타 - 특성
2.3.2 메타 - 특성 학습
2.3.3 유사 작업으로부터 예열 시작 최적화
2.3.4 메타모델
2.3.5 파이프라인 합성
2.3.6 조정할 것인가, 조정하지 않을 것인가
2.4 사전 모델로부터 학습
2.4.1 전이학습
2.4.2 신경망으로 메타러닝
2.4.3 소수 사례 학습
2.4.4 지도학습을 넘어서
2.5 결론

3장. 신경망 구조 탐색
3.1 서론
3.2 탐색 공간
3.3 탐색 전략
3.4 성과 추정 전략
3.5 미래 방향

2부. AutoML Systems

4장. 오토웨카: 자동 모델 선택과 웨카를 활용한 하이퍼파라미터 최적화
4.1 서론
4.2 사전 준비
4.2.1 모델 선택
4.2.2 하이퍼파라미터 최적화
4.3 결합 알고리듬 선택과 하이퍼파라미터
4.3.1 순차적 모델 기반 알고리듬 구성
4.4 오토웨카
4.5 실험 평가
4.5.1 베이스라인 방법
4.5.2 검증 성과 결과
4.5.3 테스트 성과 결과
4.6 결론
4.6.1 커뮤니티 채택

5장. 하이퍼옵트 사이킷런
5.1 서론
5.2 배경: 최적화를 위한 하이퍼옵트
5.3 검색 문제로서 사이킷런 모델 선택
5.4 사용 예제
5.5 실험
5.6 논의와 미래 연구
5.7 결론

6장. 오토 사이킷런: 효율적이고 강건한 자동머신러닝 157
6.1 서론
6.2 CASH 문제로서의 AutoML
6.3 AutoML의 효율성과 강건성을 향상시키기 위한 새로운 방법
6.3.1 좋은 머신러닝 프레임워크를 찾기 위한 메타러닝
6.3.2 최적화 동안 평가된 모델의 자동 앙상블 구축
6.4 현실적인 AutoML 시스템
6.5 오토 사이킷런의 오토웨카와 하이퍼옵트 사이킷런과의 비교
6.6 AutoML 개선안의 평가
6.7 오토 사이킷런 구성 요소의 세부 분석
6.8 논의와 결론
6.8.1 논의
6.8.2 사용법
6.8.3 PoSH 오토 사이킷런의 확장
6.8.4 결론과 미래 연구

7장. 딥신경망의 자동 튜닝
7.1 서론
7.2 오토넷 1.0
7.3 오토넷 2.0
7.4 실험
7.4.1 오토넷 10과 오토 사이킷런의 베이스라인 평가
7.4.2 AutoML 경연 데이터셋에 대한 결과
7.4.3 오토넷 10과 20의 비교
7.5 결론

8장. TROP: 자동머신러닝을 위한 트리 기반 파이프라인 최적화 도구
8.1 서론
8.2 방법
8.2.1 머신러닝 파이프라인 연산자
8.2.2 트리 기반 파이프라인 구축
8.2.3 트리 기반 파이프라인 최적화
8.2.4 벤치마크 데이터
8.3 결과
8.4 결론과 미래 연구

9장. 자동 통계 전문가 시스템
9.1 서론
9.2 자동 통계 전문가의 기본 해부
9.2.1 관련 연구
9.3 시계열 데이터에 대한 자동 통계 전문가 시스템
9.3.1 커널에 대한 문법
9.3.2 탐색과 평가 절차
9.3.3 자연어 설명 생성
9.3.4 인간과의 비교
9.4 다른 자동 통계 전문가 시스템
9.4.1 핵심 구성 요소
9.4.2 설계에 있어서 풀어야 할 과제들
9.5 결론

10장. 2015-2018 AutoML 챌린지 시리즈에 관한 분석
10.1 서론
10.2 문제 설정과 개요
10.2.1 문제의 범위
10.2.2 완전 모델 선택
10.2.3 하이퍼파라미터 최적화
10.2.4 모델 탐색 전략
10.3 데이터
10.4 챌린지 프로토콜
10.4.1 시간 예산과 계산 자원
10.4.2 점수 척도
10.4.3 2015/2016 챌린지 라운드와 단계
10.4.4 2018 챌린지 단계
10.5 결과
10.5.1 2015/2016 챌린지에서 얻은 점수
10.5.2 2018 챌린지에서 얻은 점수
10.5.3 데이터셋/작업의 어려움
10.5.4 하이퍼파라미터 최적화
10.5.5 메타러닝
10.5.6 챌린지에서 사용된 방법들
10.6 논의
10.7 결론

부록 I. AutoML 최신 동향
부록 II. 메타러닝과 AutoML

저자소개

라스 코토프 (지은이)    정보 더보기
네벌란드 에인트호번 공과대학교(Eindhoven University of Technology)를 졸업했다.
펼치기
이기홍 (옮긴이)    정보 더보기
카네기멜론대학교에서 석사 학위를 받았고, 피츠버그대학교의 Finance Ph.D, CFA, FRM이자 금융, 투자, 경제분석전문가다. 삼성생명, HSBC, 새마을금고중앙회, 한국투자공사 등과 같은 국내 유수의 금융기관, 금융 공기업에서 자산 운용 포트폴리오 매니저로 근무했으며 현재 딥러닝과 강화학습을 금융에 접목시켜 이를 전파하고 저변을 확대하는 것을 보람으로 삼고 있다. 저서로는 『엑셀 VBA로 쉽게 배우는 금융공학 프로그래밍』(한빛미디어, 2009)이 있으며, 번역서로는 『포트폴리오 성공 운용』(미래에셋투자교육연구소, 2010), 『딥러닝 부트캠프 with 케라스』(길벗, 2017), 『프로그래머를 위한 기초 해석학』(길벗, 2018)과 에이콘출판사에서 출간한 『실용 최적화 알고리즘』(2020), 『초과 수익을 찾아서 2/e』(2020), 『자산운용을 위한 금융 머신러닝』(2021), 『실전 알고리즘 트레이딩 배우기』(2021), 『존 헐의 비즈니스 금융 머신러닝 2/e』(2021), 『퀀트 투자를 위한 머신러닝o딥러닝 알고리듬 트레이딩 2/e』(2021), 『자동머신러닝』(2021), 『금융 머신러닝』(2022) 등이 있다. 누구나 자유롭게 머신러닝과 딥러닝을 자신의 연구나 업무에 적용해 활용하는 그날이 오기를 바라며 매진하고 있다.
펼치기

책속에서



이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책