책 이미지
책 정보
· 분류 : 국내도서 > 컴퓨터/모바일 > 컴퓨터 공학 > 데이터베이스 개론
· ISBN : 9791161752181
· 쪽수 : 288쪽
· 출판일 : 2018-10-25
책 소개
목차
1장. 소개: 머신 러닝 및 통계 과학
__큰 그림에서의 머신 러닝
__사용하는 도구: 프로그래밍 언어 및 라이브러리
__기본적인 수학 개념
__확률 및 랜덤 변수
__확률 함수에 대한 통계적 측정 기준
__요약
2장. 학습 과정
__문제 이해
__데이터셋 정의 및 획득
__피처 엔지니어링
__데이터셋 전처리
__모델 정의
__손실 함수 정의
__모델 피팅 및 평가
__모델 구현 및 결과 해석
__요약
3장. 클러스터링
__사람처럼 그룹화
__클러스터링 과정 자동화
__공통 중심 찾기: K-평균
__최근접 이웃
__K-NN 샘플 구현
__요약
4장. 선형 및 로지스틱 회귀
__회귀 분석
__선형 회귀
__공분산 및 상관관계로 기울기 및 절편 탐색
__그래디언트 디센트
__실전 데이터 탐색 및 선형 회귀
__로지스틱 회귀
__요약
5장. 신경망
__신경 모델의 역사
__단층 퍼셉트론으로 간단한 함수 구현
__요약
6장. 합성곱 신경망
__컨벌루션 신경망의 기원
__심층 신경망
__Keras를 사용한 심층 신경망 배포
__Quiver로 컨벌루션 모델 탐색
__요약
7장. 순환 신경망
__순서가 있는 문제 풀기: RNNs
__LSTM
__에너지 소비 데이터를 이용한 단변량 시계열 예측
__요약
8장. 최근 모델 및 개발 현황
__GAN
__강화 학습
__기본 RL 기술: Q-러닝
__참고 자료
__요약
9장. 소프트웨어 설치 및 설정
__리눅스 설치
__맥OS X 환경 설치
__윈도우 설치
__요약



















