logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

데이터 플랫폼 설계와 구축

데이터 플랫폼 설계와 구축

(클라우드 데이터 플랫폼 구축 시 고려사항)

다닐 즈부리브스키, 린다 파트너 (지은이), 박종하, 최철원, 구본아 (옮긴이)
에이콘출판
40,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
36,000원 -10% 0원
2,000원
34,000원 >
36,000원 -10% 0원
0원
36,000원 >
yes24 로딩중
교보문고 로딩중
11st 로딩중
영풍문고 로딩중
쿠팡 로딩중
쿠팡로켓 로딩중
G마켓 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
알라딘 판매자 배송 19개 15,900원 >
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

데이터 플랫폼 설계와 구축
eBook 미리보기

책 정보

· 제목 : 데이터 플랫폼 설계와 구축 (클라우드 데이터 플랫폼 구축 시 고려사항)
· 분류 : 국내도서 > 컴퓨터/모바일 > 컴퓨터 공학 > 데이터베이스 개론
· ISBN : 9791161756370
· 쪽수 : 448쪽
· 출판일 : 2022-04-15

책 소개

데이터 플랫폼의 유연성을 높이고 비용을 절감하는 6계층 접근 방식을 소개한다. 다양한 소스에서 데이터를 수집하기 위한 패턴을 찾고, 클라우드 공급업체에서 제공하는 서비스를 활용하는 방법을 배울 수 있다.

목차

1장. 데이터 플랫폼 소개
1.1 데이터 웨어하우스에서 데이터 플랫폼으로의 이동과 관련된 동향들
1.2 데이터의 속도, 규모, 다양성이 증가하는 상황에서 데이터 웨어하우스의 한계
1.2.1 데이터의 다양성
1.2.2 데이터 규모
1.2.3 데이터 속도
1.2.4 세 가지 V
1.3 데이터 레이크가 대안이 될 수 있을까?
1.4 퍼블릭 클라우드 활용
1.5 클라우드, 데이터 레이크, 데이터 웨어하우스: 클라우드 데이터 플랫폼의 등장
1.6 클라우드 데이터 플랫폼의 빌딩 블록(building block)
1.6.1 수집 계층
1.6.2 스토리지 계층
1.6.3 처리 계층
1.6.4 서비스 계층
1.7 클라우드 데이터 플랫폼이 세 가지 V를 다루는 방법
1.7.1 데이터의 다양성
1.7.2 데이터 규모
1.7.3 데이터 속도
1.7.4 추가 V 두 가지
1.8 공통 유스 케이스
요약

2장. 데이터 웨어하우스만이 아닌 데이터 플랫폼인 이유
2.1 클라우드 데이터 플랫폼과 클라우드 데이터 웨어하우스: 실용적 측면
2.1.1 데이터 소스 자세히 살펴보기
2.1.2 클라우드 데이터 웨어하우스만 활용한 사례
2.1.3 클라우드 데이터 플랫폼 아키텍처 사례
2.2 데이터 수집
2.2.1 애저 시냅스로 직접 데이터 수집
2.2.2 애저 데이터 플랫폼으로 데이터 수집
2.2.3 업스트림 데이터 소스의 변경 관리
2.3 데이터 처리
2.3.1 웨어하우스에서 데이터 처리
2.3.2 데이터 플랫폼에서 데이터 처리
2.4 데이터 액세스
2.5 클라우드 비용 고려사항
요약
2.6 연습문제 정답

3장. 빅 3의 활용과 확대: 아마존, 마이크로소프트 애저, 구글
3.1 클라우드 데이터 플랫폼 계층 아키텍처
3.1.1 데이터 수집 계층
3.1.2 고속 스토리지와 저속 스토리지
3.1.3 처리 계층
3.1.4 기술 메타데이터 계층(Technical metadata layer)
3.1.5 서비스 계층과 데이터 소비자
3.1.6 오케스트레이션 오버레이와 ETL 오버레이 계층
3.2 데이터 플랫폼 아키텍처에서 계층의 중요성
3.3 클라우드 데이터 플랫폼 계층에 활용할 수 있는 툴 매핑
3.3.1 AWS
3.3.2 구글 클라우드
3.3.3 애저
3.4 상용 소프트웨어 및 오픈소스 대안
3.4.1 배치 데이터 수집
3.4.2 스트리밍 데이터 수집 및 실시간 분석
3.4.3 오케스트레이션 계층
요약
3.5 연습문제 답안

4장. 플랫폼으로 데이터 가져오기
4.1 데이터베이스, 파일, API, 스트림
4.1.1 관계형 데이터베이스(Relational databases)
4.1.2 파일
4.1.3 SaaS API
4.1.4 스트림
4.2 관계형 데이터베이스에서 데이터 수집
4.2.1 SQL 인터페이스를 사용해 RDBMS에서 데이터 수집
4.2.2 테이블 전체 데이터 수집
4.2.3 증분 데이터 수집
4.2.4 변경 데이터 캡처
4.2.5 CDC 공급 업체 개요
4.2.6 데이터 타입 변환(Data type conversion)
4.2.7 NoSQL 데이터베이스에서 데이터 수집
4.2.8 RDBMS 또는 NoSQL 수집 파이프라인용 메타데이터 캡처
4.3 파일에서 데이터 수집
4.3.1 수집된 파일 추적
4.3.2 파일 수집 메타데이터 캡처
4.4 스트림 방식의 데이터 수집
4.4.1 배치와 스트리밍 수집의 차이점
4.4.2 스트리밍 파이프라인의 메타데이터 캡처
4.5 SaaS 애플리케이션들로부터 데이터 수집
4.5.1 API 설계 표준의 부재
4.5.2 전체 데이터나 증분 데이터 내보내기(export) 처리 방법의 표준 부재
4.5.3 일반적으로 결과 데이터는 중첩된 JSON 도큐먼트다
4.6 클라우드 데이터 수집에서 네트워크 및 보안 고려 사항
4.6.1 클라우드 데이터 플랫폼과 타 네트워크 간 연결
요약
4.7 연습문제 답안

5장. 데이터의 구성과 처리
5.1 데이터 플랫폼에서 처리(Processing) 계층을 별도로 분리한다는 것
5.2 데이터 처리 스테이지
5.3 클라우드 스토리지 구성
5.3.1 클라우드 스토리지 컨테이너와 폴더
5.4 공통 데이터 처리 단계
5.4.1 파일 포맷 변환
5.4.2 데이터 중복 제거
5.4.3 데이터 품질 검사
5.5 설정 가능한 파이프라인
요약
5.6 연습문제 정답

6장. 실시간 데이터 처리 및 분석
6.1 실시간 수집 계층과 실시간 처리 계층 비교
6.2 실시간 데이터 처리 유스케이스
6.2.1 소매점(Retail) 유스케이스: 실시간 수집
6.2.2 온라인 게임 유스케이스: 실시간 수집과 실시간 처리
6.2.3 실시간 수집과 실시간 처리의 비교 요약
6.3 실시간 수집과 실시간 처리의 활용 시점
6.4 실시간 사용을 위한 데이터 구조화
6.4.1 고속 스토리지의 구조
6.4.2 고속 스토리지 스케일링 방법
6.4.3 실시간 스토리지에서 데이터 구조화
6.5 실시간 시스템에서 공통 데이터 변환
6.5.1 실시간 시스템에서 데이터 중복의 원인
6.5.2 실시간 시스템에서 데이터 중복 제거
6.5.3 실시간 파이프 라인에서 메시지 포맷 변환
6.5.4 실시간 데이터 품질 체크
6.5.5 배치 데이터와 실시간 데이터 결합하기
6.6 실시간 데이터 처리용 클라우드 서비스의 종류
6.6.1 AWS 실시간 처리 서비스
6.6.2 GCP 실시간 처리 서비스
6.6.3 애저 실시간 처리 서비스
요약
6.7 연습문제 해답

7장. 메타데이터 계층 아키텍처
7.1 메타데이터의 의미
7.1.1 비즈니스 메타데이터
7.1.2 파이프라인 메타데이터(데이터 플랫폼 내부 메타데이터)
7.2 파이프라인 메타데이터의 장점
7.3 메타데이터 모델
7.3.1 메타데이터 도메인
7.4 메타데이터 계층 구현 옵션
7.4.1 설정 파일의 모음인 메타데이터 계층
7.4.2 메타데이터 데이터베이스
7.4.3 메타데이터 API
7.5 기존 솔루션 개요
7.5.1 클라우드 메타데이터 서비스
7.5.2 오픈소스 메타데이터 계층
요약
7.6 연습문제 답안

8장. 스키마 관리
8.1 스키마 관리가 필요한 이유
8.1.1 기존 데이터 웨어하우스 아키텍처의 스키마 변경
8.1.2 스키마 온 리드 방식
8.2 스키마 관리 방식
8.2.1 스키마를 계약으로 다루는 방식
8.2.2 데이터 플랫폼의 스키마 관리
8.2.3 스키마 변경 모니터링
8.3 스키마 레지스트리 구현
8.3.1 아파치 아브로 스키마
8.3.2 스키마 레지스트리 솔루션
8.3.3 메타데이터 계층의 스키마 레지스트리
8.4 스키마 진화 시나리오(Schema evolution scenarios)
8.4.1 스키마 호환성 규칙
8.4.2 스키마 진화와 데이터 변환 파이프라인
8.5 스키마 진화와 데이터 웨어하우스
8.5.1 클라우드 데이터 웨어하우스의 스키마 관리 기능
요약
8.6 연습문제 답

9장. 데이터 액세스 방법과 보안
9.1 데이터 소비자 유형
9.2 클라우드 데이터 웨어하우스
9.2.1 AWS 레드시프트
9.2.2 애저 시냅스
9.2.3 구글 빅쿼리(Google BigQuery)
9.2.4 적합한 데이터 웨어하우스 선정하기
9.3 애플리케이션 데이터 액세스
9.3.1 클라우드 관계형 데이터베이스
9.3.2 클라우드 키/밸류 데이터 저장소
9.3.3 전문 검색 서비스
9.3.4 인메모리 캐시
9.4 데이터 플랫폼에서의 머신러닝
9.4.1 클라우드 데이터 플랫폼에서의 머신러닝 모델 라이프사이클
9.4.2 ML 클라우드 협업 툴
9.5 비즈니스 인텔리전스와 리포팅 툴(reporting tool)
9.5.1 BI 툴(Business Intelligence tool)과 클라우드 데이터 플랫폼 통합
9.5.2 BI 툴로 엑셀(Excel) 사용하기
9.5.3 클라우드 공급 업체 서비스에 포함돼 있지 않은 BI 툴
9.6 데이터 보안
9.6.1 사용자, 그룹 및 역할
9.6.2 자격 증명 및 설정 관리
9.6.3 데이터 암호화
9.6.4 네트워크 바운더리(boundary)
요약
9.7 연습문제 정답

10장. 비즈니스 가치 제고를 위한 데이터 플랫폼 활용
10.1 데이터 전략이 필요한 이유
10.2 분석 역량 성숙을 위한 여정
10.2.1 SEE: 데이터로부터 인사이트를 얻는 단계
10.2.2 PREDICT: 데이터를 활용해서 예측하는 단계
10.2.3 DO: 분석 결과를 기반으로 액션을 진행하는 단계
10.2.4 CREATE: 분석을 넘어서 제품에 반영하는 단계
10.3 데이터 플랫폼: 분석 역량 성숙을 강화하는 엔진
10.4 플랫폼 프로젝트 장애물들
10.4.1 시간에 대한 인식 차
10.4.2 사용자 확산
10.4.3 사용자로부터의 신뢰성 확보와 데이터 거버넌스
10.4.4 플랫폼 사일로
10.4.5 달러 댄스
요약

저자소개

다닐 즈부리브스키 (지은이)    정보 더보기
전 세계 기업을 위한 대규모 데이터 인프라를 설계하고 지원하는 데 평생을 바쳤다. 10년 전에 IT 서비스 회사인 파티안(Pythian)에서 다양한 대규모 인터넷 회사의 오픈소스 데이터베이스 시스템을 관리하면서 경력을 쌓기 시작했다. 하둡의 초기 챔피언이었으며, 대규모 하둡 분석 인프라 구조를 설계하고 구현하는 팀을 관리하면서 하둡 클러스터 배포에 대한 책을 저술했다. 퍼블릭 클라우드가 데이터 인프라에 미칠 영향을 예상해 클라우드 데이터 서비스의 얼리 어답터였으며 전 세계 수십 개 기업을 위한 퍼블릭 클라우드 플랫폼 3사 모두에서 최신 클라우드 기반 데이터 플랫폼을 설계하고 구현했다. 서핑을 열렬히 즐겨서 노바스코샤 주 핼리팩스에 거주하며 일 년에 12개월 동안 파도를 타며 자유시간을 보낸다.
펼치기
린다 파트너 (지은이)    정보 더보기
20년 이상 데이터 비즈니스 분야에서 일해왔다. SaaS 회사의 창립자로서 고객이 제품을 사용하는 방식을 최적화하기 위해 데이터를 광범위하게 사용하면서 데이터에 빠져들었다. Intouch Insights의 사장으로 취임한 후, 전통적인 시장 조사 회사를 최초의 모바일 데이터 캡처 회사 중 하나로 전환해 주요 자동차 공급 업체를 위한 소비자 데이터를 수집했다. 현재 IT 서비스 회사인 파티안의 분석 담당 부사장으로서 광범위한 산업과 각국 회사와 협력해 데이터를 통찰하고 예측하며 제품으로 전환하도록 돕는다. 일하지 않을 때는 섬 안 별장에 머문다. 또한 카약을 타며 시간을 보내거나 데이터의 새로운 용도를 찾기 위한 계획을 세운다.
펼치기
최철원 (옮긴이)    정보 더보기
삼성SDS에 신입으로 입사해 10년간 몸담았고, 현재는 SK주식회사 C&C에서 소프트웨어 아키텍트로서 13년째 기업용 애플리케이션 개발과 관련된 업무를 하고 있다. 과거에는 자바 프레임워크, 물리 보안 관제 솔루션을 직접 개발했으며, 최근에는 컨테이너 기반 프라이빗 클라우드 플랫폼 구축의 외부 아키텍처(Outer Architecture) 영역에 참여했다. 오픈소스 기술을 활용해 데이터베이스부터 UI까지 전 영역에 걸쳐 최적화된 아키텍처를 구현하는 데 매진하고 있다.
펼치기
박종하 (옮긴이)    정보 더보기
한국 오라클에서 비즈니스 프로세스 혁신을 위한 MPR/ERP/CRM 패키지 구축 컨설턴트 역할을 담당했다. SK C&C에서는 아키텍처/QA 그룹 리더, 통신사업 마케팅/영업 역량 향상을 위한 SKT BSS 차세대 프로젝트, 유선사업 자회사들과의 FMC와 통신사업 시너지 기반을 위한 유무선 통합 프로젝트에서 아키텍트로 기여했다. KT의 통신사업 기반 효율성을 위해 유선사업, 무선사업, IPTV 사업을 통합하는 프로젝트에도 PMO 및 아키텍처 담당으로 참여했다. 최근에는 ㈜메가존에서 PMO 팀을 셋업하면서, 클라우드 네이티브 환경에 필요한 운영 프레임워크 구축 과업을 진행 중이다.
펼치기
구본아 (옮긴이)    정보 더보기
SK주식회사 C&C에 입사해 클라우드 아키텍트, 특히 애저 서비스를 활용한 Landing Zone 구축, Cloud Migration 등 전통 온프레미스 환경에서 클라우드 환경으로 전환하고자 힘쓰고 있다. 클라우드를 접목한 마이크로서비스, AI 플랫폼 구축 등 새로운 서비스에 관심이 많고, 빅데이터 분야에도 관심이 많아 공모전에 참여해 수상한 이력이 있다. 데이터에서 유의미한 정보를 찾고 알맞게 데이터를 가공하거나 높은 예측력을 위해 모델링하는 등의 역할을 했다.
펼치기

책속에서





이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책