logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

머신러닝 파워드 애플리케이션

머신러닝 파워드 애플리케이션

(아이디어에서부터 완성된 제품까지, 강력한 머신러닝 애플리케이션 구축 과정 배우기)

에마뉘엘 아메장 (지은이), 박해선 (옮긴이)
한빛미디어
27,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
24,300원 -10% 0원
1,350원
22,950원 >
yes24 로딩중
교보문고 로딩중
11st 로딩중
영풍문고 로딩중
쿠팡 로딩중
쿠팡로켓 로딩중
G마켓 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
알라딘 판매자 배송 31개 7,000원 >
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
aladin 21,600원 -10% 1080원 18,360원 >

책 이미지

머신러닝 파워드 애플리케이션
eBook 미리보기

책 정보

· 제목 : 머신러닝 파워드 애플리케이션 (아이디어에서부터 완성된 제품까지, 강력한 머신러닝 애플리케이션 구축 과정 배우기)
· 분류 : 국내도서 > 컴퓨터/모바일 > 컴퓨터 공학 > 데이터베이스 개론
· ISBN : 9791162244692
· 쪽수 : 304쪽
· 출판일 : 2021-09-06

책 소개

머신러닝 기반 애플리케이션을 설계, 구축, 배포하는 과정에 필요한 모든 기술을 설명하는 책이다. 초기 아이디어가 제품으로 개발되기까지의 과정을 머신러닝 에디터 예제 프로젝트를 통해 순서대로 배운다.

목차

[PART I 올바른 머신러닝 접근 방법 모색]

CHAPTER 1 제품의 목표를 머신러닝 문제로 표현하기
1.1 어떤 작업이 가능한지 예상하기
1.2 머신러닝 에디터 설계
1.3 모니카 로가티: 머신러닝 프로젝트의 우선순위 지정하기
1.4 마치며

CHAPTER 2 계획 수립하기
2.1 성공 측정하기
2.2 작업 범위와 문제점 예상하기
2.3 머신러닝 에디터 계획하기
2.4 규칙적인 향상 방법: 간단하게 시작하기
2.5 마치며

[PART II 초기 프로토타입 제작]

CHAPTER 3 엔드투엔드 파이프라인 만들기
3.1 가장 간단한 프로토타입
3.2 머신러닝 에디터 프로토타입
3.3 워크플로 테스트하기
3.4 머신러닝 에디터 프로토타입 평가
4.5 마치며

CHAPTER 4 초기 데이터셋 준비하기
4.1 반복적인 데이터셋
4.2 첫 번째 데이터셋 탐색하기
4.3 레이블링으로 데이터 트렌드 찾기
4.4 데이터를 활용한 특성 생성과 모델링
4.5 로버트 먼로: 데이터를 찾고, 레이블링하고, 활용하는 방법
4.6 마치며

[PART III 모델 반복]

CHAPTER 5 모델 훈련과 평가
5.1 가장 간단하고 적절한 모델
5.2 모델 평가: 정확도를 넘어서
5.3 특성 중요도 평가
5.4 마치며

CHAPTER 6 머신러닝 문제 디버깅
6.1 소프트웨어 모범 사례
6.2 데이터 흐름 디버깅: 시각화와 테스트
6.3 훈련 디버깅: 모델 학습하기
6.4 일반화 디버깅: 유용한 모델 만들기
6.5 마치며

CHAPTER 7 분류기를 사용한 글쓰기 추천
7.1 모델로 추천 만들기
7.2 모델 비교하기
7.3 추천 생성하기
7.4 마치며

[PART IV 배포와 모니터링]

CHAPTER 8 모델 배포 시 고려 사항
8.1 데이터 고려 사항
8.2 모델링 고려 사항
8.3 크리스 할랜드: 배포 실험
8.4 마치며

CHAPTER 9 배포 방식 선택
9.1 서버 측 배포
9.2 클라이언트 측 배포
9.3 연합 학습: 하이브리드 방법
9.4 마치며

CHAPTER 10 모델 안전장치 만들기
10.1 실패를 대비하는 설계
10.2 성능 설계
10.3 피드백 요청
10.4 크리스 무디: 데이터 과학자에게 모델 배포 권한 부여
10.5 마치며

CHAPTER 11 모니터링과 모델 업데이트
11.1 모니터링의 역할
11.2 모니터링 대상 선택
11.3 머신러닝을 위한 CI/CD
11.4 마치며

저자소개

에마뉘엘 아메장 (지은이)    정보 더보기
수년간 머신러닝 기반 제품을 만들었고, 현재는 스트라이프(Stripe)에서 머신러닝 엔지니어링을 담당하고 있습니다. 그전에 인사이트 펠로의 AI 책임자로 150개 이상의 머신러닝 프로젝트를 이끌었습니다. 집카(Zipcar)의 데이터 과학자로 온디맨드 예측과 머신러닝 모델을 제품 환경에 배포하는 것을 돕는 프레임워크와 서비스를 만들었습니다. 파리쉬드(Paris-Sud) 대학교에서 AI 석사 학위를 받았고 동 대학교 대학원에서 엔지니어링 석사 학위를 받았습니다. ESCP에서 경영학 석사 학위를 받아 머신러닝과 비즈니스를 아우르는 배경지식을 가지고 있습니다.
펼치기
박해선 (옮긴이)    정보 더보기
기계공학을 전공했지만 졸업 후엔 줄곧 코드를 읽고 쓰는 일을 했다. Google AI/Cloud GDE, Microsoft AI MVP이다. 텐서플로우 블로그(tensorflow.blog)를 운영하고 있으며, 머신러닝과 딥러닝에 관한 책을 집필하고 번역하면서 소프트웨어와 과학의 경계를 흥미롭게 탐험하고 있다. 《혼자 만들면서 공부하는 딥러닝》(한빛미디어, 2025), 《혼자 공부하는 머신러닝+딥러닝 개정판》(한빛미디어, 2025), 《혼자 공부하는 데이터 분석 with 파이썬》(한빛미디어, 2023), 《챗GPT로 대화하는 기술》(한빛미디어, 2023), 《Do it! 딥러닝 입문》(이지스퍼블리싱, 2019)을 집필했다. 《밑바닥부터 만들면서 배우는 LLM》(길벗, 2025), 《핸즈온 LLM》(한빛미디어, 2025), 《머신 러닝 Q & AI》(길벗, 2025), 《개발자를 위한 수학》(한빛미디어, 2024), 《실무로 통하는 ML 문제 해결 with 파이썬》(한빛미디어, 2024), 《머신러닝 교과서: 파이토치 편》(길벗, 2023), 《스티븐 울프럼의 챗GPT 강의》(한빛미디어, 2023), 《핸즈온 머신러닝 3판》(한빛미디어, 2023), 《만들면서 배우는 생성 딥러닝 2판》(한빛미디어, 2023), 《코딩 뇌를 깨우는 파이썬》(한빛미디어, 2023), 《트랜스포머를 활용한 자연어 처리》(한빛미디어, 2022), 《케라스 창시자에게 배우는 딥러닝 2판》(길벗, 2022), 《개발자를 위한 머신러닝&딥러닝》(한빛미디어, 2022), 《XGBoost와 사이킷런을 활용한 그레이디언트 부스팅》(한빛미디어, 2022), 《구글 브레인 팀에게 배우는 딥러닝 with TensorFlow.js》(길벗, 2022), 《파이썬 라이브러리를 활용한 머신러닝 개정2판》(한빛미디어, 2022), 《머신러닝 교과서 3판》(길벗, 2021)을 포함하여 수십 권의 책을 우리말로 옮겼다.
펼치기

책속에서



추천도서

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책
9791162246542