logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

일간
|
주간
|
월간

실시간 검색어

검색가능 서점

도서목록 제공

데이터 사이언티스트 실전 노트

데이터 사이언티스트 실전 노트

(데이터 핵심부터 포트폴리오까지, 한 권으로 돌파하기, 2023 세종도서 학술부문)

이지영 (지은이)
비제이퍼블릭
30,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
27,000원 -10% 0원
1,500원
25,500원 >
yes24 로딩중
교보문고 로딩중
11st 로딩중
영풍문고 로딩중
쿠팡 로딩중
쿠팡로켓 로딩중
G마켓 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
알라딘 판매자 배송 11개 15,000원 >
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
aladin 24,000원 -10% 1200원 20,400원 >

책 이미지

데이터 사이언티스트 실전 노트
eBook 미리보기

책 정보

· 제목 : 데이터 사이언티스트 실전 노트 (데이터 핵심부터 포트폴리오까지, 한 권으로 돌파하기, 2023 세종도서 학술부문)
· 분류 : 국내도서 > 컴퓨터/모바일 > 컴퓨터 공학 > 자료구조/알고리즘
· ISBN : 9791165921521
· 쪽수 : 472쪽
· 출판일 : 2022-06-29

책 소개

막연하게 데이터 사이언티스트를 꿈꾸는 것은 이제 그만! 데이터 사이언티스트의 업무가 무엇인지 정확히 이해하고 그 업무를 해결하기 위한 필수 역량이 적힌 체크리스트를 확인해 보자.

목차

저자 소개
서문
베타 리더 추천사
이 책의 구성
1장 데이터 사이언티스트 이해하기
1.1 데이터 직무 알아보기
1.1.1 데이터 직무 세 가지: 데이터 분석가, 데이터 엔지니어, 데이터 사이언티스트
1.1.2 데이터 직무별 갖춰야 할 필수 능력
1.2 데이터 사이언티스트를 왜 하필 데이터 사이언티스트라고 할까
1.2.1 회사가 데이터 사이언티스트에게 바라는 점
1.2.2 진짜 데이터 사이언티스트가 갖춰야 할 역량
1.3 데이터 사이언티스트를 희망한다면 이것부터 살펴라
1.3.1 관련 전공자와 석·박사를 우대하는 현실
1.3.2 체크리스트로 보는 나는 무엇을 키워야 할까

2장 데이터 사이언티스트에서 “데이터”
2.1 데이터 유형
2.1.1 정형 데이터(Structured Data)
2.1.2 비정형 데이터(Unstructured Data)
2.1.3 반정형 데이터(Semi-structured Data)
2.1.4 내게 필요한 데이터 유형은 무엇일까?
2.2 데이터에서 확인해야 할 사항
2.2.1 4가지 상황에서 살펴본 데이터 크기(Size)
2.2.2 데이터의 값에 따른 종류
2.2.3 결측치(Missing Value)
2.2.4 중복 데이터
2.2.5 식별키(Prime Key, Primary Key)
2.2.6 상황으로 살펴보는 스키마 생성 예시
2.3 데이터 합치기
2.3.1 데이터프레임 결합: pd.merge()
2.3.2 데이터프레임 결합: df_left.join(df_right, ...)
2.3.3 여러 데이터프레임 연결: pd.concat()
2.3.4 데이터프레임, 배열, 리스트, 딕셔너리 연결: .append()
2.3.5 상황으로 살펴보는 데이터 합치기 활용

3장 데이터 사이언티스트에서 “사이언티스트”
3.1 데이터 사이언티스트는 무엇을 하는 사람인가
3.1.1 질문을 통해 문제점 찾기
3.1.2 수학과 통계 얼마나 잘해야 할까
3.2 기본 통계로 질문자 되기
3.2.1 평균인 μ와 , 무엇이 다를까?
3.2.2 수학과 통계는 무엇이 다를까?
3.2.3 확률, 가능도, 최대 가능도 추정, 통계 차이는?
3.2.4 통계 vs. 머신러닝 그리고 모수 vs. 비모수 차이는 무엇일까?
3.2.5 정규분포를 포함한 분포는 결국 OO이다
3.2.6 분포는 무엇으로 결정될까?
3.2.7 중심경향값을 계산하는 대표적인 세 가지는 무엇일까?
3.2.8 중심경향을 제외한 분포 파악에 필요한 통계치는 무엇일까?
3.2.9 적률로 이해하는 분포 특징 4가지
3.2.10 피처 스케일링할 것인가, 말 것인가? 지도학습 사용 목적으로 판단하기
3.2.11 피처 스케일링 방법 중 선택 기준이 있을까?
3.2.12 꼭 분포를 바꿔야 할까? 로그 변환, 파워 변환에서 손실과 이익을 따져 보기
3.2.13 중심극한정리에서 시작하는 추리통계
3.2.14 [가설검정 (1) - 가설 설정] 귀무가설을 ??? =0이라고 하면 안 되는 이유
3.2.15 [가설검정 (2) - 유의수준] 가설을 선택하는 기준 & 선택에 따른 오류
3.2.16 [가설검정 (3) - 검정 통계량] 통계방법 선택하는 방법
3.2.17 [가설검정 (4) - α vs. p-value, 임계치 vs. 검정 통계량] 가설검정 결론 내리기
3.2.18 두 개 이상의 변수 관계를 이해할 때 알아야 할 개념: 공분산, 상관계수, 선형성, 공선성, 다중공선성
3.2.19 차원의 저주란 무엇일까?
3.2.20 저주를 풀어줄 PCA란?
3.2.21 필요한 변수만 선택해야 할 때 어떤 방법이 좋을까?
3.3 100개 지식을 아는 사람 vs. 110개 지식을 아는 사람, 누가 진정한 데이터 사이언티스트일까?

4장 데이터 사이언티스트가 하는 일
4.1 직장인으로서 데이터 사이언티스트
4.1.1 피할 수 없는 ‘업무 정의의 모호성’
4.1.2 업무를 제대로 이해하는 방법
4.1.3 업무의 방향성을 지켜 줄 두 가지의 방법
4.1.4 당신을 돋보이게 할 상황에 따른 커뮤니케이션 방법
4.2 꼭 알아야 할 키워드
4.2.1 모델의 수익화(Web API)
4.2.2 불확실성(Uncertainty) 다루기
4.2.3 모델 해석 능력(Interpretability)
4.2.4 업무 효율성 - 자동화 머신러닝, 파이프라인

5장 포트폴리오로 시작하기
5.1 왜 포트폴리오일까?
5.2 당신을 함정에 빠뜨릴 포트폴리오
5.2.1 누구나 다 아는 데이터
5.2.2 복사 & 붙여넣기 식의 포트폴리오
5.2.3 양 vs. 질: 양을 선택한 포트폴리오
5.3 포트폴리오 예시
5.3.1 주제 찾기 & 문제점 제시
5.3.2 데이터
5.3.3 해결 과정
5.3.4 결과
5.3.5 플랫폼 선택, 문서화
5.3.6 재검토
5.3.7 마치며

에필로그
찾아보기

저자소개

이지영 (지은이)    정보 더보기
데이터 분석과 머신 러닝을 통해 비즈니스 문제를 해결하고, 정보 시각화로 의사 결정에 도움을 주는 일을 하고 있다. 현) 글로벌 제약회사 커머셜팀 데이터 사이언티스트 저서) 『데이터 사이언티스트 실전 노트』(비제이퍼블릭)
펼치기

책속에서



추천도서

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책
9791165921668