logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

개발자를 위한 실전 선형대수학

개발자를 위한 실전 선형대수학

(파이썬 3.10 버전 대응, 구글 코랩 실습 가능 I 연습 문제 + 해답+ 해설 영상, 무료 샘플북 제공)

마이크 코헨 (지은이), 장정호 (옮긴이)
한빛미디어
28,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
25,200원 -10% 0원
1,400원
23,800원 >
yes24 로딩중
교보문고 로딩중
11st 로딩중
영풍문고 로딩중
쿠팡 로딩중
쿠팡로켓 로딩중
G마켓 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
aladin 20,160원 -10% 1000원 17,140원 >

책 이미지

개발자를 위한 실전 선형대수학
eBook 미리보기

책 정보

· 제목 : 개발자를 위한 실전 선형대수학 (파이썬 3.10 버전 대응, 구글 코랩 실습 가능 I 연습 문제 + 해답+ 해설 영상, 무료 샘플북 제공)
· 분류 : 국내도서 > 컴퓨터/모바일 > 컴퓨터 공학 > 컴퓨터공학/전산학 개론
· ISBN : 9791169211451
· 쪽수 : 356쪽
· 출판일 : 2023-09-25

책 소개

복잡한 증명 방식이 아닌 파이썬을 이용한 코드 구현으로 직관적으로 빠르게 선형대수학의 핵심을 빠르게 익힐 수 있다. 벡터와 행렬의 기본 개념부터 LU 분해, QR 분해, 고윳값 및 특잇값 분해, 주성분 분석까지 개발자 맞춤형 선형대수학 이론을 다룬다.

목차

Chapter 1 벡터, 파트 1: 벡터와 벡터의 기본 연산
1.1 NumPy로 벡터 생성 및 시각화하기
_1.1.1 벡터의 기하학적 해석
1.2 벡터 연산
_1.2.1 두 벡터의 덧셈
_1.2.2 벡터의 덧셈과 뺄셈의 기하학적 해석
_1.2.3 스칼라-벡터 곱셈
_1.2.4 스칼라-벡터 덧셈
_1.2.5 전치
_1.2.6 파이썬에서 벡터 브로드캐스팅
1.3 벡터 크기와 단위벡터
1.4 벡터-내적
_1.4.1 내적의 분배 법칙
_1.4.2 내적의 기하학적 해석
1.5 그 외 벡터 곱셈
_1.5.1 아다마르곱
_1.5.2 외적
_1.5.3 교차곱과 삼중곱
1.6 직교벡터 분해
1.7 마치며
연습 문제

Chapter 2 벡터, 파트 2: 벡터의 확장 개념

2.1 벡터 집합
2.2 선형 가중 결합
2.3 선형 독립성
_2.3.1 수학에서의 선형 독립성
_2.3.2 독립성과 영벡터
2.4 부분공간과 생성
2.5 기저
_2.5.1 기저 정의
2.6 마치며
연습 문제

Chapter 3 벡터 응용: 데이터 분석에서의 벡터

3.1 상관관계와 코사인 유사도
3.2 시계열 필터링과 특징 탐지
3.3 k-평균 클러스터링
연습 문제

Chapter 4 행렬, 파트 1: 행렬과 행렬의 기본 연산

4.1 NumPy에서 행렬 생성과 시각화
_4.1.1 행렬 시각화와 인덱싱, 슬라이싱
_4.1.2 특수 행렬
4.2 행렬 수학: 덧셈, 스칼라 곱셈, 아다마르곱
_4.2.1 덧셈과 뺄셈
_4.2.2 행렬 ‘이동’
_4.2.3 스칼라 곱셈과 아다마르곱
4.3 표준 행렬 곱셈
_4.3.1 행렬 곱셈 유효성에 관한 규칙
_4.3.2 행렬 곱셈
_4.3.3 행렬-벡터 곱셈
4.4 행렬 연산: 전치
_4.4.1 내적과 외적 표기법
4.5 행렬 연산: LIVE EVIL(연산 순서)
4.6 대칭 행렬
_4.6.1 비대칭 행렬로부터 대칭 행렬 생성하기
4.7 마치며
연습 문제

Chapter 5 행렬, 파트2: 행렬의 확장 개념

5.1 행렬 노름
_5.1.1 행렬의 대각합과 프로베니우스 노름
5.2 행렬 공간(열, 행, 영)
_5.2.1 열공간
_5.2.2 행공간
_5.2.3 영공간
5.3 계수
_5.3.1 특수 행렬의 계수
_5.3.2 덧셈 및 곱셈 행렬의 계수
_5.3.3 이동된 행렬의 계수
_5.3.4 이론과 실제
5.4 계수 응용
_5.4.1 벡터가 열공간에 존재하나요?
_5.4.2 벡터 집합의 선형 독립성
5.5 행렬식
_5.5.1 행렬식 계산
_5.5.2 선형 종속성과 행렬식
_5.5.3 특성 다항식
5.6 마치며
연습 문제

Chapter 6 행렬 응용: 데이터 분석에서의 행렬

6.1 다변량 데이터 공분산 행렬
6.2 행렬-벡터 곱셈을 통한 기하학적 변환
6.3 이미지 특징 탐지
6.4 마치며
연습 문제

Chapter 7 역행렬: 행렬 방정식의 만능 키

7.1 역행렬
7.2 역행렬의 유형과 가역성의 조건
7.3 역행렬 계산
_7.3.1 2×2 행렬의 역행렬
_7.3.2 대각 행렬의 역행렬
_7.3.3 임의의 정방 최대계수 행렬의 역행렬
_7.3.4 단방향 역행렬
7.4 역행렬의 유일성
7.5 무어-펜로즈 의사역행렬
7.6 역행렬의 수치적 안정성
7.7 역행렬의 기하학적 해석
7.8 마치며
연습 문제

Chapter 8 직교 행렬과 QR 분해: 선형대수학의 핵심 분해법 1

8.1 직교 행렬
8.2 그람-슈미트 과정
8.3 QR 분해
_8.3.1 Q와 R의 크기
_8.3.2 QR 분해와 역
8.4 마치며
연습 문제

Chapter 9 행 축소와 LU 분해: 선형대수학의 핵심 분해법 2

9.1 연립방정식
_9.1.1 연립방정식을 행렬로 변환하기
_9.1.2 행렬 방정식 다루기
9.2 행 축소
_9.2.1 가우스 소거법
_9.2.2 가우스-조던 소거법
_9.2.3 가우스-조던 소거법을 통한 역행렬 계산
9.3 LU 분해
_9.3.1 치환 행렬을 통한 행 교환
9.4 마치며
연습 문제

Chapter 10 일반 선형 모델 및 최소제곱법: 우주를 이해하기 위한 방법

10.1 일반 선형 모델
_10.1.1 용어
_10.1.2 일반 선형 모델 구축
10.2 GLM 풀이
_10.2.1 해법이 정확할까요?
_10.2.2 최소제곱법의 기하학적 관점
_10.2.3 최소제곱법은 어떻게 작동할까요?
10.3 GLM의 간단한 예
10.4 QR 분해를 통한 최소제곱법
10.5 마치며
연습 문제

Chapter 11 최소제곱법 응용: 실제 데이터를 활용한 최소제곱법

11.1 날씨에 따른 자전거 대여량 예측
_11.1.1 statsmodels을 사용한 회귀 분석 표
_11.1.2 다중공선성
_11.1.3 정규화
11.2 다항식 회귀
11.3 그리드 서치로 모델 매개변수 찾기
11.4 마치며
연습 문제

Chapter 12 고윳값 분해: 선형대수학의 진주

12.1 고윳값과 고유벡터의 해석
_12.1.1 고윳값과 고유벡터의 기하학적 해석
_12.1.2 통계(주성분 분석)
_12.1.3 잡음 감쇠
_12.1.4 차원 축소(데이터 압축)
12.2 고윳값 구하기
12.3 고유벡터 찾기
_12.3.1 고유벡터의 부호와 크기 불확정성
12.4 정방 행렬의 대각화
12.5 대칭 행렬의 특별함
_12.5.1 직교 고유벡터
_12.5.2 실수 고윳값
12.6 특이 행렬의 고윳값 분해
12.7 이차식, 정부호성 및 고윳값
_12.7.1 행렬의 이차식
_12.7.2 정부호성
_12.7.3 ATA 는 양의 (준)정부호
12.8 일반화된 고윳값 분해
12.9 마치며
연습 문제

Chapter 13 특잇값 분해: 고윳값 분해의 다음 단계

13.1 SVD 개요
_13.1.1 특잇값과 행렬의 계수
13.2 파이썬에서 SVD
13.3 행렬의 SVD와 계수-1 ‘계층’
13.4 EIG로부터 SVD
_13.4.1 ATA 의 SVD
_13.4.2 특잇값의 분산 변환과 설명
_13.4.3 행렬의 조건수
13.5 SVD와 MP 의사역행렬
13.6 마치며
연습 문제

Chapter 14 고윳값 분해와 SVD 응용: 선형대수학의 선물

14.1 고윳값 분해와 SVD를 사용한 주성분 분석(PCA)
_14.1.1 PCA의 수학
_14.1.2 PCA 수행 단계
_14.1.3 SVD를 통한 PCA
14.2 선형판별분석
14.3 SVD를 통한 낮은 계수 근사
_14.3.1 SVD를 이용한 잡음 제거
14.4 마치며
연습 문제

APPENDIX A 파이썬 튜토리얼

A.1 왜 파이썬을 사용하나요?
A.2 IDE(통합 개발 환경)
A.3 로컬 및 온라인에서 파이썬 사용하기
A.4 변수
A.5 함수
A.6 시각화
A.7 수식을 코드로 변환하기
A.8 출력 서식과 f-문자열
A.9 제어 흐름
A.10 실행 시간 측정
A.11 추가 학습
A.12 마치며

저자소개

마이크 코헨 (지은이)    정보 더보기
네덜란드 라드바우드 대학 메디컬 센터의 돈더스 연구소 소속 신경과학 부교수. 20년 이상 과학 코딩, 데이터 분석, 통계 및 관련 주제를 가르치며, 여러 온라인 강좌와 교과서를 썼습니다.
펼치기
장정호 (옮긴이)    정보 더보기
네이버 검색 소프트웨어 엔지니어. 2006년에 티맥스에서 애플리케이션/시스템 간 데이터 전송 시스템 개발을 시작으로, 다음커뮤니케이션에서 데이터 마이닝 업무, SAP에서 칼럼 기반의 인메모리 RDBMS인 HANA 개발에 동참했으며, 그 후 빅데이터 저장/분석 시스템 영역에 관한 연구를 통해 네이버에서 데이터 분석 시스템을 개발을 담당하고 있습니다. 한빛미디어에서 『쿠퍼네티스 모범 사례』(2020), 『하둡 완벽 가이드(4판)』(2017), 『하이브 완벽 가이드』(2013) 등을 번역했습니다. SK텔레콤의 데이터 플랫폼 엔지니어. 네이버와 SAP에서 데이터 플랫폼과 데이터베이스 개발에 참여했습니다.
펼치기

책속에서



이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책
9791169217286