logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

LLM 엔지니어링

LLM 엔지니어링

(RAG, 파인튜닝, LLMOps로 완성하는 실무 중심의 LLM 애플리케이션 개발)

폴 이우수틴, 막심 라본 (지은이), 조우철 (옮긴이)
한빛미디어
38,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
34,200원 -10% 0원
1,900원
32,300원 >
yes24 로딩중
교보문고 로딩중
11st 로딩중
영풍문고 로딩중
쿠팡 로딩중
쿠팡로켓 로딩중
G마켓 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
aladin 30,400원 -10% 1520원 25,840원 >

책 이미지

LLM 엔지니어링
eBook 미리보기

책 정보

· 제목 : LLM 엔지니어링 (RAG, 파인튜닝, LLMOps로 완성하는 실무 중심의 LLM 애플리케이션 개발)
· 분류 : 국내도서 > 컴퓨터/모바일 > 컴퓨터 공학 > 자료구조/알고리즘
· ISBN : 9791169213806
· 쪽수 : 508쪽
· 출판일 : 2025-05-02

책 소개

프로덕션 수준의 LLM 애플리케이션을 개발하고 배포하는 데 필요한 엔지니어링 방법들을 상세히 안내한다. LLM 라이프사이클을 체계적으로 살펴보며, 데이터 엔지니어링부터 지도 학습 파인튜닝, 모델 평가, 추론 최적화, RAG 파이프라인 개발까지 핵심 개념과 실용적인 기술들을 다룬다.

목차

CHAPTER 1 LLM Twin 개념과 아키텍처 이해
_1.1 LLM Twin 개념
_1.2 LLM Twin의 제품 기획
_1.3 특성, 학습, 추론 파이프라인 기반 ML 시스템 개발
_1.4 LLM Twin의 시스템 아키텍처 설계
_요약
_참고 문헌

CHAPTER 2 도구 및 설치
_2.1 파이썬 생태계와 프로젝트 설치
_2.2 MLOps와 LLMOps 도구
_2.3 비정형 데이터와 벡터 데이터를 저장하기 위한 데이터베이스
_2.4 AWS 사용 준비
_요약
_참고 문헌

CHAPTER 3 데이터 엔지니어링
_3.1 LLM Twin의 데이터 수집 파이프라인 설계
_3.2 LLM Twin의 데이터 수집 파이프라인 구현
_3.3 원시 데이터를 데이터 웨어하우스로 수집
_요약
_참고 문헌

CHAPTER 4 RAG 특성 파이프라인
_4.1 RAG 이해
_4.2 고급 RAG 개요
_4.3 LLM Twin의 RAG 특성 파이프라인 아키텍처
_4.4 LLM Twin의 RAG 특성 파이프라인 구현하기
_요약
_참고 문헌

CHAPTER 5 지도 학습 파인튜닝
_5.1 지시문 데이터셋 생성
_5.2 지시문 데이터셋 자체 생성
_5.3 SFT 기법
_5.4 실전 파인튜닝
_요약
_참고 문헌

CHAPTER 6 선호도 정렬을 활용한 파인튜닝
_6.1 선호도 데이터셋 이해
_6.2 선호도 데이터셋 생성
_6.3 선호도 정렬
_6.4 DPO 구현
_요약
_참고 문헌

CHAPTER 7 LLM 평가
_7.1 모델 평가
_7.2 RAG 평가
_7.3 TwinLlama-3.1-8B 평가
_요약
_참고 문헌

CHAPTER 8 추론 최적화
_8.1 모델 최적화 전략
_8.2 모델 병렬 처리
_8.3 모델 양자화
_요약
_참고 문헌

CHAPTER 9 RAG 추론 파이프라인
_9.1 LLM Twin의 RAG 추론 파이프라인 이해
_9.2 LLM Twin의 고급 RAG 기법 탐구
_9.3 LLM Twin의 RAG 추론 파이프라인 구현
_요약
_참고 문헌

CHAPTER 10 추론 파이프라인 배포
_10.1 배포 유형 선택 기준
_10.2 추론 배포 유형 이해
_10.3 모놀리식 아키텍처와 마이크로서비스 아키텍처 비교
_10.4 LLM Twin의 추론 파이프라인 배포 전략 탐구
_10.5 LLM Twin 서비스를 배포하기
_10.6 급증하는 사용량 처리를 위한 오토스케일링
_요약
_참고 문헌

CHAPTER 11 MLOps와 LLMOps
_11.1 DevOps, MLOps, LLMOps
_11.2 LLM Twin 파이프라인을 클라우드에 배포하기
_11.3 LLM Twin에 LLMOps 적용
_요약
_참고 문헌

APPENDIX MLOps 원칙
_원칙 1: 자동화 또는 운영화
_원칙 2: 버전 관리
_원칙 3: 실험 추적
_원칙 4: 테스트
_원칙 5: 모니터링
_원칙 6: 재현 가능성

저자소개

막심 라본 (지은이)    정보 더보기
Liquid AI의 모델 최적화 총괄 책임자. 파리 폴리테크닉 연구소에서 ML 박사 학위를 취득했으며, AI/ML 분야의 구글 개발자로 일하고 있다. LLM 과정과 LLM AutoEval 등의 도구, NeuralDaredevil과 같은 SOTA 모델을 포함해 오픈 소스 커뮤니티에 활발히 기여하고 있으며, 기술 블로그도 꾸준히 운영하고 있다. 저서로는 『핸즈온 그래프 인공신경망 with Python』(홍릉, 2024)이 있다.
펼치기
폴 이우수틴 (지은이)    정보 더보기
7년 이상 생성형 AI, 컴퓨터 비전 및 MLOps 설루션을 구축한 시니어 ML/MLOps 엔지니어. 최근에는 Metaphysic에서 대규모 신경망을 프로덕션에 적용하는 핵심 엔지니어로 근무했다. 또한 프로덕션급 ML 교육 채널인 Decoding ML을 설립해 사람들이 ML 시스템을 구축할 수 있도록 IT 기사와 오픈 소스 강좌를 제공하고 있다.
펼치기
조우철 (옮긴이)    정보 더보기
포스코이앤씨 AI 연구원. 사내에서 LLM 응용기술개발 업무를 담당하며, LLM 기반 입찰/계약 문서 검토 설루션 개발 등 다양한 AI 설루션 개발 프로젝트를 수행했다. 링크드인과 페이스북에 LLM 기술 관련 글을 올리고 있다.
펼치기

책속에서



이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책
9791169219372