logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

R로 배우는 텍스트 마이닝

R로 배우는 텍스트 마이닝

(tidytext 라이브러리를 활용하는 방법)

줄리아 실기, 데이비드 로빈슨 (지은이), 박진수 (옮긴이)
제이펍
20,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
알라딘 로딩중
yes24 로딩중
교보문고 로딩중
11st 로딩중
영풍문고 로딩중
쿠팡 로딩중
쿠팡로켓 로딩중
G마켓 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

R로 배우는 텍스트 마이닝
eBook 미리보기

책 정보

· 제목 : R로 배우는 텍스트 마이닝 (tidytext 라이브러리를 활용하는 방법)
· 분류 : 국내도서 > 컴퓨터/모바일 > 프로그래밍 언어 > 프로그래밍 언어 기타
· ISBN : 9791188621552
· 쪽수 : 232쪽
· 출판일 : 2019-06-04

책 소개

tidytext 패키지는 ggplot2나 dplyr 같은 R 패키지에 깔려 있는 정돈(tidy, 깔끔화) 원리를 바탕으로 개발되었는데, 이 책을 통해 여러분은 tidytext와 R에서 쓸 수 있는 그 밖의 정돈 도구들로 텍스트를 더욱 쉽고 효율적으로 분석하는 방법을 익힐 수 있다.

목차

CHAPTER 1 정돈 텍스트(깔끔한 텍스트) 형식 1
정돈 텍스트와 다른 데이터 구조 비교하기 2
unnest_tokens 함수 3
제인 오스틴의 작품 정돈하기 6
gutenbergr 패키지 10
단어 빈도 10
요약 16

CHAPTER 2 정돈 데이터를 사용한 정서분석 17
정서 데이터셋 18
내부 조인을 사용한 정서분석 21
세 가지 정서 사전 비교 25
가장 흔한 긍정 단어와 부정 단어 28
워드 클라우드 30
단순한 단어 이상인 단위 보기 32
요약 35

CHAPTER 3 단어와 문서의 빈도 분석: tf-idf 37
제인 오스틴의 소설 속 용어빈도 38
지프의 법칙 40
bind_tf_idf 함수 44
물리학 텍스트의 말뭉치 47
요약 53

CHAPTER 4 단어 간 관계: 엔그램과 상관 55
엔그램에 의한 토큰화 56
엔그램 개수 세기와 선별하기 57
바이그램 분석 59
정서분석 시 바이그램을 사용해 문맥 제공하기 62
ggraph를 사용해 바이그램 연결망 시각화화기 65
그 밖의 텍스트에 들어 있는 바이그램 시각화하기 71
widyr 패키지와 단어 쌍 세기 및 상관 73
각 단원 간의 개수 세기 및 상관 74
쌍 단위 상관 검사 76
요약 81

CHAPTER 5 비정돈 형식 간에 변환하기 83
문서-용어 행렬 정돈하기 84
DocumentTermMatrix 객체 정돈하기 85
dfm 객체 정돈하기 89
정돈 텍스트 데이터를 행렬에 캐스팅하기 92
Corpus 객체를 메타데이터로 정돈하기 94
사례 연구: 금융 관련 기사 마이닝 97
요약 104

CHAPTER 6 토픽 모델링 105
잠재 디리클레 할당 106
단어-토픽 확률 108
문서-토픽 확률 111
예제: 대도서관 강도 113
각 장의 LDA 115
문서당 분류 118
단어별 할당: augment 121
대체 LDA 구현 125
요약 127

CHAPTER 7 사례 연구: 트위터 아카이브 비교 129
데이터 및 트위터 분포 얻기 129
단어 빈도 131
단어 용도 비교 135
단어 사용 변화 137
즐겨찾기 및 리트윗 143
요약 148

CHAPTER 8 사례 연구: NASA 메타데이터 마이닝 149
NASA가 데이터를 조직하는 방식 150
데이터 랭글링과 정돈 151
일부 초기 단순 탐사 154
단어 동시 발생과 상관 156
설명 및 제목 단어 연결망 156
중요어 연결망 159
설명 필드에 대한 tf-idf 계산 163
설명 필드 단어의 tf-idf는 무엇인가? 163
설명 필드를 중요어에 연결하기 164
토픽 모델링 166
문서-용어 행렬에 캐스팅하기 166
토픽 모델링 준비 167
토픽 모델 해석 168
토픽 모델링을 중요어와 연결하기 175
요약 178

CHAPTER 9 사례 연구: 유즈넷 텍스트 분석 179
전처리 179
텍스트 전처리 181
뉴스그룹의 단어들 183
뉴스그룹 내에서 tf-idf 찾기 184
토픽 모델링 187
정서분석 190
단어별 정서분석 191
메시지별 정서분석 194
엔그램 분석 197
요약 199

참고문헌 201
찾아보기 203

저자소개

줄리아 실기 (지은이)    정보 더보기
줄리아는 스택 오버플로에서 일하는 데이터 과학자다. 복잡한 데이터셋들을 분석하기도 하고 기술적 주제로 다양한 청중과 소통하기도 한다. 천체물리학 박사이며, 제인 오스틴을 사랑하고, 아름다운 도표 그리기를 좋아한다.
펼치기
데이비드 로빈슨 (지은이)    정보 더보기
데이비드는 스택 오버플로에서 데이터 과학자로 근무하고 있으며, 프린스턴대학교에서 전산생물학 박사 학위를 받았다. broom, gganimate, fuzzyjoin, widyr 같은 R 패키지를 주로 오픈소스 형태로 개발한다.
펼치기
박진수 (옮긴이)    정보 더보기
업으로 발판을 다지고 있다. 번역한 책으로 《사물인터넷을 위한 인공지능》 《실전! GAN 프로젝트》 《실전 예제로 배우는 GAN》 《전문가를 위한 머신러닝 솔루션》 《딥러닝 모델 설계를 떠받치는 기술》 《따라 하면서 배우는 유니티 ML-Agents》가 있다.
펼치기

책속에서



제인 오스틴(Jane Austen)이 탈고해 출판한 소설 여섯 개를 janeaustenr 패키지에서 가져온 다음 정돈 형식으로 변형해 보자. janeaustenr 패키지는 텍스트를 1줄당 1행(one-row-per-line) 형식으로 제공하는데, 이 맥락에서 의미하는 줄(line)이란 실제 도서의 원문에 맞춰 인쇄된 한 줄을 말한다. 이것을 사용해 정돈 작업에 착수하되 mutate()를 사용해 linenumber 수에 해당하는 만큼을 주석으로 처리함으로써 원래 줄 형식을 추적하는 데 사용하고, chapter(regex 사용)를 사용해 모든 장이 어디부터 나오는지를 알아낸다.


이제 janeaustenr 패키지를 사용해 정돈 텍스트를 탐색해 보았으므로, 이번에는 gutenbergr 패키지를 소개하겠다. gutenbergr 패키지는 구텐베르크 프로젝트(Project Gutenberg) 모음집 중 공공 저작물(public domain works)에 해당하는 텍스트에 접근할 수 있게 한다. 이 패키지에는 도서를 내려받기 위한 도구(도움이 되지 않는 머리글/바닥글 정보는 제거)와 관심 있는 작품을 찾는 데 사용할 수 있는 구텐베르크 프로젝트 메타데이터의 전체 데이터셋이 포함되어 있다. 이 책에서는 구텐베르크 프로젝트에서 ID별로 하나 이상의 작품을 다운로드하는 gutenberg_download() 함수를 주로 사용하지만, 다른 함수를 사용해 메타데이터를 탐색하고 제목, 작성자, 언어 등과 짝을 이루는 구텐베르크 ID를 탐색할 수 있을 뿐만 아니라 저자에 대한 정보도 수집할 수 있다.


이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책