logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

검색을 위한 딥러닝

검색을 위한 딥러닝

(심층 신경망을 활용하는 차세대 검색 엔진 개발)

토마소 테오필리 (지은이), 박진수 (옮긴이)
제이펍
29,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
알라딘 로딩중
yes24 로딩중
교보문고 로딩중
11st 로딩중
영풍문고 로딩중
쿠팡 로딩중
쿠팡로켓 로딩중
G마켓 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
aladin 20,300원 -10% 1010원 17,260원 >

책 이미지

검색을 위한 딥러닝
eBook 미리보기

책 정보

· 제목 : 검색을 위한 딥러닝 (심층 신경망을 활용하는 차세대 검색 엔진 개발)
· 분류 : 국내도서 > 컴퓨터/모바일 > 인공지능
· ISBN : 9791188621972
· 쪽수 : 384쪽
· 출판일 : 2020-03-12

책 소개

딥러닝, 즉 심층 신경망을 사용하여 더 나은 검색을 이끌어내는 방법을 배운다. 색인 처리 및 순위지정과 같은 기본 검색 기술이 딥러닝과 어떤 관련성이 있는지를 알아본다. 그런 다음, 아파치 루씬과 DL4J를 사용하는 검색 기능을 딥러닝 기술로 보강해 보는 심층 예제를 다룬다.

목차

PART I 검색이 딥러닝을 만나다 1
CHAPTER 1 신경망을 이용한 검색 3

1.1 신경망과 딥러닝 5
1.2 머신러닝이란? 8
1.3 검색 시에 딥러닝으로 할 수 있는 일은? 10
1.4 딥러닝 학습을 위한 계획도 14
1.5 유용한 정보 꺼내기 16
1.5.1 텍스트, 토큰, 용어, 검색에 관한 기초 지식 18
1.5.2 연관도 우선 28
1.5.3 고전적인 검색 모델 29
1.5.4 정밀도와 재현율 30
1.6 미해결 문제들 31
1.7 검색 엔진 블랙박스 열기 32
1.8 구조의 손길을 펼치는 딥러닝 34
1.9 색인아, 뉴런을 만나 주지 않을래? 38
1.10 신경망 훈련 39
1.11 신경 검색의 약속들 42

CHAPTER 2 동의어 생성 44
2.1 동의어 확장 소개 45
2.1.1 왜 동의어인가? 47
2.1.2 어휘 기반 동의어 일치 49
2.2 맥락의 중요성 60
2.3 순방향 신경망 62
2.4 word2vec 사용 66
2.4.1 Deeplearning4j에 word2vec 끼워 쓰기 76
2.4.2 Word2vec 기반 동의어 확장 77
2.5 평가 및 비교 80
2.6 프로덕션 시스템에 대해 고려할 사항 81
2.6.1 동의어 대 반의어 83

PART 2 검색 엔진에 신경망들 던져 넣기 87
CHAPTER 3 일반 검색에서 텍스트 생성까지 89

3.1 정보 요구 대 쿼리: 틈새를 메우는 것 91
3.1.1 대안 쿼리 생성 91
3.1.2 데이터 준비 94
3.1.3 데이터 생성 준비 102
3.2 시퀀스 학습 103
3.3 재귀 신경망 104
3.3.1 RNN 내부 구조와 작동 방식 107
3.3.2 장기 의존성 111
3.3.3 장단기 기억망 112
3.4 비지도 학습 방식으로 텍스트를 생성하기 위한 LSTM 망 113
3.4.1 비지도 쿼리 확장 122
3.5 비지도 텍스트 생성에서 지도 텍스트 생성까지 126
3.5.1 시퀀스-투-시퀀스 모델링 126
3.6 프로덕션 시스템에 대해 고려해야 할 점 130

CHAPTER 4 그럴듯한 쿼리들 제안하기 133
4.1 쿼리 제안 생성 134
4.1.1 쿼리 작성 중에 제안하기 135
4.1.2 사전 기반 제안 136
4.2 루씬 룩업 API 136
4.3 분석된 내용을 활용하는 제안기 141
4.4 언어 모델 사용 148
4.5 내용 기반 제안기 152
4.6 신경 언어 모델 154
4.7 제안용 문자 기반 신경 언어 모델 156
4.8 LSTM 언어 모델 조율 160
4.9 단어 매장을 이용한 제안 다양화 169

CHAPTER 5 단어 매장을 사용해 검색 결과의 순위지정하기 173
5.1 순위지정의 중요성 174
5.2 검색 모델 177
5.2.1 TF-IDF와 벡터 공간 모델 179
5.2.2 루씬에서 문서의 순위지정하기 183
5.2.3 확률 모델 186
5.3 신경 정보 검색 188
5.4 단어 벡터에서 문서 벡터까지 189
5.5 평가 및 비교 196
5.5.1 평균 단어 매장 기준 유사도 198

CHAPTER 6 순위지정 및 추천을 위한 문서 매장 203
6.1 단어 매장으로부터 문서 매장까지 204
6.2 순위지정 시 단락 벡터 사용 208
6.2.1 단락 벡터 기반 유사도 211
6.3 문서 매장과 연관 내용 211
6.3.1 검색, 추천 그리고 연관 내용 212
6.3.2 빈출 용어들을 사용해 유사한 내용 찾기 214
6.3.3 단락 벡터를 사용해 유사한 내용 검색 224
6.3.4 인코더-디코더 모델에서 벡터를 사용해 유사한 내용 검색 227

PART 3 한 걸음 더 나아가다 231
CHAPTER 7 여러 언어로 검색하기 233

7.1 언어가 서로 다른 사용자들에게 서비스하기 234
7.1.1 문서 번역 대 쿼리 번역 235
7.1.2 교차 언어 검색 237
7.1.3 루씬 기반 다중 언어 쿼리 239
7.2 통계적 기계 번역 241
7.2.1 정렬 244
7.2.2 단락 기반 번역 245
7.3 병렬 말뭉치를 가지고 일하기 246
7.4 신경 기계 번역 249
7.4.1 인코더-디코더 모델 250
7.4.2 DL4J에서 기계 번역을 하기 위한 인코더-디코더 254
7.5 여러 언어를 위한 단어 매장 및 문서 매장 261
7.5.1 선형 사영 1개 국어 사용 매장 261

CHAPTER 8 내용 기반 이미지 검색 268
8.1 이미지 내용과 검색 270
8.2 되돌아보기: 텍스트 기반 이미지 검색 272
8.3 이미지 이해하기 275
8.3.1 이미지 표현 277
8.3.2 특징 추출 280
8.4 이미지 표현을 위한 딥러닝 288
8.4.1 CNN 290
8.4.2 이미지 검색 298
8.4.3 국소성 민감 해싱 304
8.5 레이블이 없는 이미지 다루기 308

CHAPTER 9 성능 엿보기 314
9.1 성과 및 딥러닝의 약속 315
9.1.1 모델 설계로부터 모델 산출로 316
9.2 색인과 뉴런이 협동하게 하기 334
9.3 데이터 스트림 작업 337

찾아보기 346

저자소개

토마소 테오필리 (지은이)    정보 더보기
오픈 소스와 머신러닝에 열정을 보이는 소프트웨어 엔지니어다. 아파치 소프트웨어 재단의 일원으로서 정보 검색 분야(루씬, 솔라 등)부터 자연어 처리와 OpenNLP, Joshua, UIMA 등에 이르는 다양한 오픈 소스 프로젝트에 기여하고 있다. 현재 어도비(Adobe)에서 검색 및 색인화 기반 컴포넌트를 개발 중이며, 자연어 처리, 정보 검색 및 딥러닝 분야를 연구하고 있다. 베를린에서 열리는 버즈워즈(Buzzwords), 국제 컴퓨터 과학 회의, 아파치콘(ApacheCon), 이클립스콘(EclipseCon) 등을 포함한 여러 회의에서 검색 기술과 머신러닝 기술의 융합을 제안했다. 트위터 @teofili에서 그를 만나 볼 수 있다.
펼치기
박진수 (옮긴이)    정보 더보기
정보기술(IT)과 관련하여 다양한 개발·저술·번역·기술 편집·기술 교정·자문·발표·기고를 해왔으며, 1인 기업을 세웠다가 닫기도 했다. 최근에는 주로 인공지능과 관련한 번역·자문·강의를 하고 있다. 저술하고 번역한 책들이 많아서 좁은 지면에 모두 나열하기 어렵지만, 원하는 독자라면 이 책들을 온라인 서점에서 역자의 이름으로 쉽게 검색해서 찾아볼 수 있을 것이다. 제이펍에서 출간한 번역서로는 《케라스 창시자의 딥러닝 with R》, 《R로 배우는 텍스트 마이닝》, 《파이썬으로 배우는 응용 텍스트 분석》, 《검색을 위한 딥러닝》, 《객체지향 사고 프로세스》, 《레시피로 배우는 아두이노 쿡북(제3판)》 등이 있다.
펼치기

책속에서



최종 사용자에게는 검색 결과의 품질이 무척 중요하다. 검색 엔진은 어떤 검색 결과가 특정 사용자가 필요한 정보에 가장 부합한지를 알아내는 일을 무엇보다 잘 해야 한다. 검색 결과로 나온 내용에 순위(rank)가 잘 지정되어 있으면 사용자들은 중요한 결과를 더 쉽고 빠르게 찾을 수 있다. 그래서 우리는 관련 결과(relevant result)의 토픽에 많은 중점을 두었다. 현실적으로 이로 인해 엄청난 격차가 벌어진다.


쿼리 로그의 각 행에는 검색 결과(더 정확하게 말하자면 일치하는 결과를 담은 문서 식별번호들)와 관련된 사용자 입력 쿼리가 포함되어 있다. 하지만 여러분이 필요로 하는 것은 이게 아니다. 훈련 사례는 입력 쿼리와 입력과 유사한 하나 이상의 출력 쿼리로 구성되어야 한다. 그래서 망을 훈련하기 전에 여러분은 검색 로그의 라인을 처리하고 훈련 집합을 만들어야 한다. 데이터를 조작하고 수정하는 일을 포함한 이러한 종류의 작업을 흔히 데이터 준비(data preparation) 또는 전처리(preprocessing)라고 한다. 다소 지루하게 들릴지 모르지만, 데이터 준비는 관련된 머신러닝 과제의 성패를 좌우한다.


추천도서

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책
9791191600582