logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

예제로 배우는 파이썬 머신러닝

예제로 배우는 파이썬 머신러닝

(텐서플로 2, 파이토치, 사이킷런으로 만들면서 배우는 다양한 인공지능 시스템, 제3판)

위시 (헤이든) 류 (지은이), 구정회 (옮긴이)
제이펍
33,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
29,700원 -10% 0원
1,650원
28,050원 >
29,700원 -10% 0원
카드할인 10%
2,970원
26,730원 >
yes24 로딩중
교보문고 로딩중
11st 로딩중
영풍문고 로딩중
쿠팡 로딩중
쿠팡로켓 로딩중
G마켓 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
aladin 23,100원 -10% 1150원 19,640원 >

책 이미지

예제로 배우는 파이썬 머신러닝
eBook 미리보기

책 정보

· 제목 : 예제로 배우는 파이썬 머신러닝 (텐서플로 2, 파이토치, 사이킷런으로 만들면서 배우는 다양한 인공지능 시스템, 제3판)
· 분류 : 국내도서 > 컴퓨터/모바일 > 인공지능
· ISBN : 9791192469249
· 쪽수 : 480쪽
· 출판일 : 2022-08-26

책 소개

인공지능 시스템 구축에 필요한 지식과 개발 방법을 망라한 가이드북. 꾸준히 개정되어 이번 3판에는 영화 추천 엔진(나이브 베이즈), 얼굴 인식(SVM), 주가 예측(신경망), 옷 이미지 분류(CNN), 시퀀스 예측(RNN), 강화학습 등 6개 장이 추가되었다.

목차

지은이·옮긴이 소개 xiii
기술 감수자 소개 xiv
옮긴이 머리말 xv
베타리더 후기 xvii
감사의 글 xix
이 책에 대하여 xx

^^CHAPTER 1 머신러닝과 파이썬 시작하기 1^^
1.1 머신러닝 소개 2
1.2 머신러닝의 전제 조건 7
1.3 세 가지 유형의 머신러닝 시작하기 8
1.4 머신러닝의 핵심 파헤치기 11
1.5 데이터 처리와 특징 공학 23
1.6 모델 결합 29
1.7 소프트웨어 설치 및 설정 34
1.8 요약 39
1.9 연습 문제 39

^^CHAPTER 2 나이브 베이즈를 이용한 영화 추천 엔진 구축 41^^
2.1 분류 시작하기 42
2.2 나이브 베이즈 45
2.3 나이브 베이즈 구현 52
2.4 나이브 베이즈를 이용한 영화 추천기 구축 57
2.5 분류 성능 평가 62
2.6 교차 검증으로 모델 조정 66
2.7 요약 69
2.8 연습 문제 69
2.9 참고 문헌 70

^^CHAPTER 3 서포트 벡터 머신을 이용한 얼굴 인식 71^^
3.1 SVM으로 구분 경계 탐색 72
3.2 SVM을 이용한 얼굴 이미지 분류 90
3.3 태아심박동검사에서 태아 상태 분류 96
3.4 요약 98
3.5 연습 문제 99

^^CHAPTER 4 트리 기반 알고리즘을 이용한 온라인 광고 클릭률 예측 101^^
4.1 광고 클릭률 예측의 개요 102
4.2 두 가지 유형의 데이터로 시작하기: 수치형과 범주형 103
4.3 루트에서 리프까지 의사결정 트리 탐색 104
4.4 밑바닥부터 구현하는 의사결정 트리 115
4.5 사이킷런을 이용한 의사결정 트리 구현 123
4.6 의사결정 트리를 이용한 광고 클릭률 예측 124
4.7 의사결정 트리 앙상블: 랜덤 포레스트 130
4.8 의사결정 트리 앙상블: 그레이디언트 부스티드 트리 132
4.9 요약 135
4.10 연습 문제 135

^^CHAPTER 5 로지스틱 회귀를 이용한 온라인 광고 클릭률 예측 137^^
5.1 범주형 특징을 수치형으로 변환: 원-핫 인코딩과 순서 인코딩 138
5.2 로지스틱 회귀를 이용한 데이터 분류 141
5.3 로지스틱 회귀 모델 훈련 146
5.4 온라인 학습을 통한 대규모 데이터셋 훈련 158
5.5 다중 클래스 분류 161
5.6 텐서플로를 이용한 로지스틱 회귀 구현 163
5.7 랜덤 포레스트를 이용한 특징 선택 165
5.8 요약 167
5.9 연습 문제 167

^^CHAPTER 6 테라바이트 규모의 클릭 로그 예측 169^^
6.1 아파치 스파크의 핵심 배우기 170
6.2 파이스파크 프로그래밍 175
6.3 스파크를 통한 대규모 클릭 로그 학습 178
6.4 스파크를 이용한 범주형 변수의 특징 공학 189
6.5 요약 195
6.6 연습 문제 196

^^CHAPTER 7 회귀 알고리즘을 이용한 주가 예측 197^^
7.1 주식시장과 주가의 개요 198
7.2 회귀란 무엇인가? 199
7.3 주가 데이터 수집 200
7.4 선형회귀를 이용한 추정 210
7.5 의사결정 트리 회귀를 이용한 추정 217
7.6 서포트 벡터 회귀를 이용한 추정 225
7.7 회귀 성능 평가 226
7.8 회귀 알고리즘 세 가지를 이용한 주가 예측 228
7.9 요약 233
7.10 연습 문제 233

^^CHAPTER 8 인공 신경망을 이용한 주가 예측 235^^
8.1 신경망의 이해 236
8.2 신경망 구축 242
8.3 적절한 활성화 함수 선택 248
8.4 신경망의 과적합 방지 249
8.5 신경망을 이용한 주가 예측 251
8.6 요약 259
8.7 연습 문제 259

^^CHAPTER 9 텍스트 분석 기법을 이용한 20개 뉴스그룹 데이터셋 분석 261^^
9.1 컴퓨터가 언어를 이해하는 방법: NLP 262
9.2 인기 있는 NLP 라이브러리와 NLP 기초 265
9.3 뉴스그룹 데이터 가져오기 274
9.4 뉴스그룹 데이터 탐색 276
9.5 텍스트 데이터의 특징 고려 279
9.6 t-SNE를 이용한 뉴스그룹 데이터 시각화 286
9.7 요약 289
9.8 연습 문제 290

^^CHAPTER 10 군집화와 주제 모델링을 이용한 뉴스그룹 데이터셋의 기본 주제 찾기 291^^
10.1 선생님 없이 학습하기: 비지도학습 292
10.2 k-평균을 이용한 뉴스그룹 데이터 군집화 293
10.3 뉴스그룹 이면의 주제 발견 311
10.4 요약 318
10.5 연습 문제 319

^^CHAPTER 11 머신러닝 모범 사례 321^^
11.1 머신러닝 솔루션 워크플로 322
11.2 데이터 준비 단계의 모범 사례 323
11.3 훈련셋 생성 단계의 모범 사례 329
11.4 모델 훈련, 평가, 선택 단계의 모범 사례 340
11.5 배포와 모니터링 단계의 모범 사례 345
11.6 요약 349
11.7 연습 문제 350

^^CHAPTER 12 합성곱 신경망을 이용한 옷 이미지 분류 351
12.1 CNN의 구성 요소 352
12.2 분류를 위한 CNN 구조 설계 356
12.3 옷 이미지 데이터셋 358
12.4 CNN을 이용한 옷 이미지 분류 361
12.5 데이터 증강을 통한 CNN 분류기 강화 369
12.6 데이터 증강을 통한 옷 이미지 분류기 개선 375
12.7 요약 378
12.8 연습 문제 378

^^CHAPTER 13 순환 신경망을 이용한 시퀀스 예측 379^^
13.1 순차 학습 소개 380
13.2 예시를 통해 배우는 RNN 구조 380
13.3 RNN 모델 훈련 386
13.4 장단기 메모리를 이용한 장기 의존성 극복 387
13.5 RNN을 이용한 영화 리뷰 감정 분석 390
13.6 RNN으로 나만의 《전쟁과 평화》 작성하기 398
13.7 트랜스포머 모델을 이용한 언어 이해도 향상 409
13.8 요약 412
13.9 연습 문제 412

^^CHAPTER 14 강화학습을 이용한 복잡한 환경에서의 의사결정 413^^
14.1 작업 환경 설정 413
14.2 예시를 이용한 강화학습 소개 417
14.3 동적 프로그래밍을 이용한 FrozenLake 환경 해결 421
14.4 몬테카를로 학습 수행 432
14.5 Q-러닝 알고리즘으로 택시 문제 풀기 441
14.6 요약 449
14.7 연습 문제 449

찾아보기 450

저자소개

구정회 (옮긴이)    정보 더보기
연세대학교 전자공학과를 졸업하고, 포항공대에서 컴퓨터비전 전공으로 석사, 연세대학교에서 통신신호처리 전공으로 박사 학위를 취득했다. 현재 삼성리서치(Samsung Research)에서 컴퓨터비전 관련 딥러닝 연구를 하고 있다. 틈틈이 눈과 카메라를 통해 발견하는 즐거움을 찾으며, 하루하루 일상을 살고 있다. 제이펍에서 《쏙쏙 들어오는 인공지능 알고리즘》(2021년 세종도서 학술부문도서 선정), 《머신러닝 엔지니어링》(2022년 대한민국학술원 우수학술도서 선정)을 번역했다.
펼치기

책속에서

정밀도, 재현율, F1 점수는 다중 클래스 분류에도 적용할 수 있는데, 이 경우에는 관심 있는 클래스를 양성으로 처리하고 그 밖의 다른 클래스는 음성으로 처리한다. / 클래스 평균 F1 점수와 클래스별 F1 점수 모두 가장 높은 값을 얻도록 이진 분류기를 조정(예를 들어 나이브 베이즈 분류기의 평활화 계수와 같은 초매개변수(hyperparameter)의 다양한 조합을 시도하는 경우)할 수 있으면 좋겠지만, 일반적으로는 어렵다. 어떤 경우에는 한 모델의 평균 F1 점수가 다른 모델보다 높지만, 특정 클래스에 대해서는 F1 점수가 상당히 낮다. 또 어떤 경우에는 두 모델의 평균 F1 점수가 동일하지만,한 모델의 어떤 클래스에 대한 F1 점수는 높고 다른 클래스에 대해서는 F1 점수가 낮다. 이와 같은 상황에서 어떤 모델이 더 잘 작동하는지는 어떻게 판단할 수 있을까?


온라인 디스플레이 광고는 머신러닝을 활용하기에 매우 좋은 예 중 하나다. 광고주와 소비자는 타깃이 명확한 광고에 큰 관심을 가진다. 지난 20년 동안 업계는 광고 타기팅의 효과를 예측하기 위해 머신러닝 모델에 크게 의존해왔는데, 특정 연령대의 소비자가 이 제품에 관심을 가질 가능성, 특정 가계소득 수준의 고객이 광고를 본 뒤에 이 제품을 구매할 가능성, 스포츠 사이트를 자주 방문하는 방문자가 해당 광고를 읽는 데 더 많은 시간을 할애할 가능성 등이 이에 해당한다. 광고의 효과를 측정하는 가장 일반적인 방법은 클릭률(click-through rate, CTR)로, 전체 조회수 대비 특정 광고를 클릭하는 비율이다.


예측력을 높이려면 더 많은 특징을 생성해야 한다. 요약하자면, 머신러닝에서의 특징 공학은 머신러닝 알고리즘의 성능을 향상하기 위해 기존 특징을 기반으로 도메인별(domain-specific) 특징을 생성하는 과정이다. / 일반적으로 특징 공학에는 충분한 도메인 지식이 필요한데, 매우 어려울뿐더러 시간이 많이 소요될 수 있다. 실제로 머신러닝 문제를 해결하는 데 사용되는 특징은 바로 눈에 보이지 않는 만큼, 스팸 이메일 탐지와 뉴스그룹 분류에서의 용어 빈도나 tf-idf 특징과 같이 구체적으로 설계하고 구성해야 한다. 따라서 머신러닝에서 특징 공학은 필수 요소이면서 실제 문제를 해결하기 위해 가장 큰 노력을 쏟는 부분이다.


이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책
9791192469638