logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Differential Geometry of Manifolds

Differential Geometry of Manifolds (Hardcover, 2 ed)

Stephen Lovett (지은이)
A K Peters/CRC Press
215,020원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
176,310원 -18% 0원
8,820원
167,490원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Differential Geometry of Manifolds
eBook 미리보기

책 정보

· 제목 : Differential Geometry of Manifolds (Hardcover, 2 ed) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 기하학 > 기하학 일반
· ISBN : 9780367180461
· 쪽수 : 450쪽
· 출판일 : 2019-12-17

목차

1 Analysis of Multivariable Functions Legend 1.1 Functions from R to R cut 1.2 Continuity, Limits, and Differentiability new 1.3 Differentiation Rules: Functions of Class moved 1.4 Inverse and Implicit Function Theorems split 2 Coordinates, Frames, and Tensor Notation Variable Frames 2.1 Curvilinear Coordinates Frames Associated to Coordinate Systems 2.2 Moving Frames in Physics Frames Associate to Trajectories 2.3 Moving Variable Frames and Matrix Functions 2.4 Tensor Notation 3 Differentiable Manifolds 3.1 Definitions and Examples 3.2 Differentiable Maps between Manifolds 3.3 Tangent Spaces 3.4 Differentials of Maps between Manifolds 3.5 Manifolds with Boundary 3.6 Immersions, Submersions, and Submanifolds 3.7 Orientability 3.8 Chapter Summary 4 Multilinear Algebra (most of this chapter’s content comes from previous Appendix C) 4.1 Bilinear Forms, Quadratic Forms, and Inner Products 4.2 Adjoint, Self-Adjoint, Automorphisms (I will introduce/revisit Lorentz transforms here as automorphisms of a Lorentz metric) 4.3 The Hom Space and the Dual Space 4.4 The Tensor Product 4.5 Components of Tensors (some of the content will come from the deleted section on tensor notation in the previous section 2.4) 4.6 Symmetric and Alternating Products 5 Analysis on Manifolds 5.1 Vector Bundles on Manifolds 5.2 Vector Fields on Manifolds (I will be able to introduce the notions of Riemannian, Lorentzian, and symplectic manifolds here as way of comparison.) 5.3 The Lie Bracket 5.4 Differential Forms 5.5 Push-Forwards and Pull-Backs 5.6 Integration on Manifolds 5.7 Stokes’ Theorem 6 Introduction to Riemannian Geometry 6.1 Riemannian Metrics 6.2 Connections and Covariant Differentiation (Since this section is decoupled from the Levi-Civita connection, I may put this section in Chapter 5.) 6.3 The Levi-Civita Connection 6.4 Vector Fields Along Curves 6.5 Geodesics 6.6 The Curvature Tensor (I may split this section into two.) 7 Applications of Manifolds to Physics 7.1 Hamiltonian Mechanics 7.2 Electromagnetism 7.3 Metric Concepts in String Theory 7.4 A Brief Introduction to General Relativity (I will significantly rework this section.) Appendices A Point Set Topology A.1 Introduction (This currently is just 3 paragraphs to introduce the section) A.1 Metric Spaces A.2 Topological Spaces A.4 Proof of the Regular Jordan Curve Theorem A.5 Simplicial Complexes and Triangulations A.6 Euler Characteristic B Calculus of Variations B.1 Formulation of Several Problems (Same as former A.1) B.1 The Euler- Lagrange Equation B.2 Several Dependent Variables B.4 Isoperimetric Problems and Lagrange Multipliers C Some More Useful Multilinear Algebra C.1 Volume Forms and the Binet-Cauchy Theorem C.2 The Hodge Star Operator

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책