logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Exploring Multivariate Data With the Forward Search

Exploring Multivariate Data With the Forward Search (Hardcover)

Andrea Cerioli, Marco Riani, A. C. Atkinson (지은이)
Springer Verlag
214,970원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
176,270원 -18% 0원
8,820원
167,450원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Exploring Multivariate Data With the Forward Search
eBook 미리보기

책 정보

· 제목 : Exploring Multivariate Data With the Forward Search (Hardcover) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 확률과 통계 > 다변량 분석
· ISBN : 9780387408521
· 쪽수 : 624쪽
· 출판일 : 2004-01-09

목차

Contents Preface Notation 1 Examples of Multivariate Data 1.1 In.uence, Outliers and Distances 1.2 A Sketch of the Forward Search 1.3 Multivariate Normality and our Examples 1.4 Swiss Heads 1.5 National Track Records forWomen 1.6 Municipalities in Emilia-Romagna 1.7 Swiss Bank Notes 1.8 Plan of the Book 2 Multivariate Data and the Forward Search 2.1 The Univariate Normal Distribution 2.1.1 Estimation 2.1.2 Distribution of Estimators 2.2 Estimation and the Multivariate Normal Distribution 2.2.1 The Multivariate Normal Distribution 2.2.2 The Wishart Distribution 2.2.3 Estimation of O 2.3 Hypothesis Testing 2.3.1 Hypotheses About the Mean 2.3.2 Hypotheses About the Variance 2.4 The Mahalanobis Distance 2.5 Some Deletion Results 2.5.1 The Deletion Mahalanobis Distance 2.5.2 The (Bartlett)-Sherman-Morrison-Woodbury Formula 2.5.3 Deletion Relationships Among Distances 2.6 Distribution of the Squared Mahalanobis Distance 2.7 Determinants of Dispersion Matrices and the Squared Mahalanobis Distance 2.8 Regression 2.9 Added Variables in Regression 2.10 TheMean Shift OutlierModel 2.11 Seemingly Unrelated Regression 2.12 The Forward Search 2.13 Starting the Search 2.13.1 The Babyfood Data 2.13.2 Robust Bivariate Boxplots from Peeling 2.13.3 Bivariate Boxplots from Ellipses 2.13.4 The Initial Subset 2.14 Monitoring the Search 2.15 The Forward Search for Regression Data 2.15.1 Univariate Regression 2.15.2 Multivariate Regression 2.16 Further Reading 2.17 Exercises 2.18 Solutions 3 Data from One Multivariate Distribution 3.1 Swiss Heads 3.2 National Track Records for Women 3.3 Municipalities in Emilia-Romagna 3.4 Swiss Bank Notes 3.5 What Have We Seen? 3.6 Exercises 3.7 Solutions 4 Multivariate Transformations to Normality 4.1 Background 4.2 An Introductory Example: the Babyfood Data 4.3 Power Transformations to Approximate Normality 4.3.1 Transformation of the Response in Regression 4.3.2 Multivariate Transformations to Normality 4.4 Score Tests for Transformations 4.5 Graphics for Transformations 4.6 Finding a Multivariate Transformation with the Forward Search 4.7 Babyfood Data 4.8 Swiss Heads 4.9 Horse Mussels 4.10 Municipalities in Emilia-Romagna 4.10.1 Demographic Variables 4.10.2 Wealth Variables 4.10.3 Work Variables 4.10.4 A Combined Analysis 4.11 National Track Records for Women 4.12 Dyestuff Data 4.13 Babyfood Data and Variable Selection 4.14 Suggestions for Further Reading 4.15 Exercises 4.16 Solutions 5 Principal Components Analysis 5.1 Background 5.2 Principal Components and Eigenvectors 5.2.1 Linear Transformations and Principal Components . 5.2.2 Lack of Scale Invariance and Standardized Variables 5.2.3 The Number of Components 5.3 Monitoring the Forward Search 5.3.1 Principal Components and Variances 5.3.2 Principal Component Scores 5.3.3 Correlations Between Variables and Principal Components 5.3.4 Elements of the Eigenvectors 5.4 The Biplot and the Singular Value Decomposition 5.5 Swiss Heads 5.6 Milk Data 5.7 Quality of Life 5.8 Swiss Bank Notes 5.8.1 Forgeries and Genuine Notes 5.8.2 Forgeries Alone 5.9 Municipalities in Emilia-Romagna 5.10 Further reading 5.11 Exercises 5.12 Solutions 6 Discriminant Analysis 6.1 Background 6.2 An Outline of Discriminant Analysis 6.2.1 Bayesian Discrimination 6.2.2 Quadratic Discriminant Analysis 6.2.3 Linear Discriminant Analysis 6.2.4 Estimation of Means and Variances 6.2.5 Canonical Variates 6.2.6 Assessment of Discriminant Rules 6.3 The Forward Search 6.3.1 Step 1: Choice of the Initial Subset 6.3.2 Step 2: Adding

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책