logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Theory of Statistics

Theory of Statistics (Hardcover, 2, 1995. Corr. 2nd)

Mark J. Schervish (지은이)
Springer Verlag
259,980원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
213,180원 -18% 0원
10,660원
202,520원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Theory of Statistics
eBook 미리보기

책 정보

· 제목 : Theory of Statistics (Hardcover, 2, 1995. Corr. 2nd) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 확률과 통계 > 일반
· ISBN : 9780387945460
· 쪽수 : 716쪽
· 출판일 : 1995-08-10

목차

'Content.- 1: Probability Models.- 1.1 Background.- 1.1.1 General Concepts.- 1.1.2 Classical Statistics.- 1.1.3 Bayesian Statistics.- 1.2 Exchangeability.- 1.2.1 Distributional Symmetry.- 1.2.2 Frequency arid Exchangeability.- 1.3 Parametric Models.- 1.3.1 Prior, Posterior, and Predictive Distributions.- 1.3.2 Improper Prior Distributions.- 1.3.3 Choosing Probability Distributions.- 1.4 DeFinetti's Representation Theorem.- 1.4.1 Understanding the Theorems.- 1.4.2 The Mathematical Statements.- 1.4.3 Some Examples.- 1.5 Proofs of DeFinetti's Theorem and Related Results .- 1.5.1 Strong Law of Large Numbers.- 1.5.2 The Bernoulli Case.- 1.5.3 The General Finite Case .- 1.5.4 The General Infinite Case.- 1.5.5 Formal Introduction to Parametric Models .- 1.6 Infinite-Dimensional Parameters .- 1.6.1 Dirichlet Processes.- 1.6.2 Tailfree Processes+.- 1.7 Problems.- 2: Sufficient Statistics.- 2.1 Definitions.- 2.1.1 Notational Overview.- 2.1.2 Sufficiency.- 2.1.3 Minimal and Complete Sufficiency.- 2.1.4 Ancillarity.- 2.2 Exponential Families of Distributions.- 2.2.1 Basic Properties.- 2.2.2 Smoothness Properties.- 2.2.3 A Characterization Theorem .- 2.3 Information.- 2.3.1 Fisher Information.- 2.3.2 Kullback-Leibler Information.- 2.3.3 Conditional Information .- 2.3.4 Jeffreys' Prior .- 2.4 Extremal Families .- 2.4.1 The Main Results.- 2.4.2 Examples.- 2.4.3 Proofs+.- 2.5 Problems.- Chapte 3: Decision Theory.- 3.1 Decision Problems.- 3.1.1 Framework.- 3.1.2 Elements of Bayesian Decision Theory.- 3.1.3 Elements of Classical Decision Theory.- 3.1.4 Summary.- 3.2 Classical Decision Theory.- 3.2.1 The Role of Sufficient Statistics.- 3.2.2 Admissibility.- 3.2.3 James-Stein Estimators.- 3.2.4 Minimax Rules.- 3.2.5 Complete Classes.- 3.3 Axiomatic Derivation of Decision Theory .- 3.3.1 Definitions and Axioms.- 3.2.2 Examples.- 3.3.3 The Main Theorems.- 3.3.4 Relation to Decision Theory.- 3.3.5 Proofs of the Main Theorems .- 3.3.6 State-Dependent Utility .- 3.4 Problems.- 4: Hypothesis Testing.- 4.1 Introduction.- 4.1.1 A Special Kind of Decision Problem.- 4.1.2 Pure Significance Tests.- 4.2 Bayesian Solutions.- 4.2.1 Testing in General.- 4.2.2 Bayes Factors.- 4.3 Most Powerful Tests.- 4.3.1 Simple Hypotheses and Alternatives.- 4.3.2 Simple Hypotheses, Composite Alternatives.- 4.3.3 One-Sided Tests.- 4.3.4 Two-Sided Hypotheses.- 4.4 Unbiased Tests.- 4.4.1 General Results.- 4.4.2 Interval Hypotheses.- 4.4.3 Point Hypotheses.- 4.5 Nuisance Parameters.- 4.5.1 Neyinan Structure.- 4.5.2 Tests about Natural Parameters.- 4.5.3 Linear Combinations of Natural Parameters.- 4.5.4 Other Two-Sided Cases .- 4.5.5 Likelihood Ratio Tests.- 4.5.6 The Standard F-Test as a Bayes Rule.- 4.6 P-Values.- 4.6.1 Definitions and Examples.- 4.6.2 P-Values and Bayes Factors.- 4.7 Problems.- 5: Estimation.- 5.1 Point Estimation.- 5.1.1 Minimum Variance Unbiased Estimation.- 5.1.2 Lower Bounds on the Variance of Unbiased Estimators.- 5.1.3 Maximum Likelihood Estimation.- 5.1.4 Bayesian Estimation.- 5.1.5 Robust Estimation .- 5.2 Set Estimation.- 5.2.1 Confidence Sets.- 5.2.2 Prediction Sets .- 5.2.3 Tolerance Sets .- 5.2.4 Bayesian Set Estimation.- 5.2.5 Decision Theoretic Set Estimation.- 5.3 The Bootstrap .- 5.3.1 The General Concept.- 5.3.2 Standard Deviations and Bias.- 5.3.3 Bootstrap Confidence Intervals.- 5.4 Problems.- 6: Equivariance .- 6.1 Common Examples.- 6.1.1 Location Problems.- 6.1.2 Scale Problems.- 6.2 Equivariant Decision Theory.- 6.2.1 Groups of Transformations.- 6.2.2 Equivariance and Changes of Units.- 6.2.3 Minimum Risk Equivariant Decisions.- 6.3 Testing and Confidence Intervals .- 6.3.1 P-Values in Invariant Problems.- 6.3.2 Equivariant Confidence Sets.- 6.3.3 Invariant Tests .- 6.4 Problems.- 7: Large Sample Theory.- 7.1 Convergence Concepts.- 7.1.1 Deterministic Convergence.- 7.1.2 Stochastic Convergence.- 7.1.3 The Delta Method.- 7.2 Sample Quantiles.-

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책