logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Likelihood, Bayesian, and McMc Methods in Quantitative Genetics

Likelihood, Bayesian, and McMc Methods in Quantitative Genetics (Hardcover)

Daniel Sorensen, Daniel Gianola (지은이)
Springer Verlag
739,610원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
606,480원 -18% 0원
30,330원
576,150원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Likelihood, Bayesian, and McMc Methods in Quantitative Genetics
eBook 미리보기

책 정보

· 제목 : Likelihood, Bayesian, and McMc Methods in Quantitative Genetics (Hardcover) 
· 분류 : 외국도서 > 과학/수학/생태 > 과학 > 생명과학 > 진화
· ISBN : 9780387954400
· 쪽수 : 740쪽
· 출판일 : 2002-08-12

목차

Preface I Review of Probability and Distribution Theory 1 Probability and Random Variables 1.1 Introduction 1.2 Univariate Discrete Distributions 1.2.1 The Bernoulli and Binomial Distributions 1.2.2 The Poisson Distribution 1.2.3 Binomial Distribution: Normal Approximation 1.3 Univariate Continuous Distributions 1.3.1 The Uniform, Beta, Gamma, Normal, and Student-t Distributions 1.4 Multivariate Probability Distributions 1.4.1 The Multinomial Distribution 1.4.2 The Dirichlet Distribution 1.4.3 The d-Dimensional Uniform Distribution 1.4.4 The Multivariate Normal Distribution 1.4.5 The Chi-square Distribution 1.4.6 The Wishart and Inverse Wishart Distributions 1.4.7 The Multivariate-t Distribution 1.5 Distributions with Constrained Sample Space 1.6 Iterated Expectations 2 Functions of Random Variables 2.1 Introduction 2.2 Functions of a Single Random Variable 2.2.1 Discrete Random Variables 2.2.2 Continuous Random Variables 2.2.3 Approximating the Mean and Variance 2.2.4 Delta Method 2.3 Functions of Several Random Variables 2.3.1 Linear Transformations 2.3.2 Approximating the Mean and Covariance Matrix II Methods of Inference 3 An Introduction to Likelihood Inference 3.1 Introduction 3.2 The Likelihood Function 3.3 The Maximum Likelihood Estimator 3.4 Likelihood Inference in a Gaussian Model 3.5 Fisher's Information Measure 3.5.1 Single Parameter Case 3.5.2 Alternative Representation of Information 3.5.3 Mean and Variance of the Score Function 3.5.4 Multiparameter Case 3.5.5 Cramer-Rao Lower Bound 3.6 Sufficiency 3.7 Asymptotic Properties: Single Parameter Models 3.7.1 Probability of the Data Given the Parameter 3.7.2 Consistency 3.7.3 Asymptotic Normality and Effciency 3.8 Asymptotic Properties: Multiparameter Models 3.9 Functional Invariance 3.9.1 Illustration of FunctionalInvariance 3.9.2 Invariance in a Single Parameter Model 3.9.3 Invariance in a Multiparameter Model 4 Further Topics in Likelihood Inference 4.1 Introduction 4.2 Computation of Maximum Likelihood Estimates 4.3 Evaluation of Hypotheses 4.3.1 Likelihood Ratio Tests 4.3.2 Con.dence Regions 4.3.3 Wald's Test 4.3.4 Score Test 4.4 Nuisance Parameters 4.4.1 Loss of Efficiency Due to Nuisance Parameters 4.4.2 Marginal Likelihoods 4.4.3 Profile Likelihoods 4.5 Analysis of a Multinomial Distribution 4.5.1 Amount of Information per Observation 4.6 Analysis of Linear Logistic Models 4.6.1 The Logistic Distribution 4.6.2 Likelihood Function under Bernoulli Sampling 4.6.3 Mixed Effects Linear Logistic Model 5 An Introduction to Bayesian Inference 5.1 Introduction 5.2 Bayes Theorem: Discrete Case 5.3 Bayes Theorem: Continuous Case 5.4 Posterior Distributions 5.5 Bayesian Updating 5.6 Features of Posterior Distributions 5.6.1 Posterior Probabilities 5.6.2 Posterior Quantiles 5.6.3 Posterior Modes 5.6.4 Posterior Mean Vector and Covariance Matrix 6 Bayesian Analysis of Linear Models 6.1 Introduction 6.2 The Linear Regression Model 6.2.1 Inference under Uniform Improper Priors 6.2.2 Inference under Conjugate Priors 6.2.3 Orthogonal Parameterization of the Model 6.3 The Mixed Linear Model 6.3.1 Bayesian View of the Mixed Effects Model 6.3.2 Joint and Conditional Posterior Distributions 6.3.3 Marginal Distribution of Variance Components 6.3.4 Marginal Distribution of Location Parameters 7 The Prior Distribution and Bayesian Analysis 7.1 Introduction 7.2 An Illustration of the Effect of Priors on Inferences 7.3 A Rapid Tour of Bayesian Asymptotics 7.3.1 Discrete Parameter 7.3.2 Continuous Parameter 7.4 Statistical Information and Entropy 7.4.1 Information 7.4.2 Entropy of a Discrete

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책