logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Stochastic Controls: Hamiltonian Systems and Hjb Equations

Stochastic Controls: Hamiltonian Systems and Hjb Equations (Hardcover, 1999)

(Hamiltonian Systems and Hjb Equations)

Jiongmin Yong, Xun Yu Zhou (지은이)
Springer Verlag
411,660원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
337,560원 -18% 0원
16,880원
320,680원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Stochastic Controls: Hamiltonian Systems and Hjb Equations
eBook 미리보기

책 정보

· 제목 : Stochastic Controls: Hamiltonian Systems and Hjb Equations (Hardcover, 1999) (Hamiltonian Systems and Hjb Equations)
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 응용수학
· ISBN : 9780387987231
· 쪽수 : 439쪽
· 출판일 : 1999-06-22

목차

1. Basic Stochastic Calculus.- 1. Probability.- 1.1. Probability spaces.- 1.2. Random variables.- 1.3. Conditional expectation.- 1.4. Convergence of probabilities.- 2. Stochastic Processes.- 2.1. General considerations.- 2.2. Brownian motions.- 3. Stopping Times.- 4. Martingales.- 5. Ito's Integral.- 5.1. Nondifferentiability of Brownian motion.- 5.2. Definition of Ito's integral and basic properties.- 5.3. Ito's formula.- 5.4. Martingale representation theorems.- 6. Stochastic Differential Equations.- 6.1. Strong solutions.- 6.2. Weak solutions.- 6.3. Linear SDEs.- 6.4. Other types of SDEs.- 2. Stochastic Optimal Control Problems.- 1. Introduction.- 2. Deterministic Cases Revisited.- 3. Examples of Stochastic Control Problems.- 3.1. Production planning.- 3.2. Investment vs. consumption.- 3.3. Reinsurance and dividend management.- 3.4. Technology diffusion.- 3.5. Queueing systems in heavy traffic.- 4. Formulations of Stochastic Optimal Control Problems.- 4.1. Strong formulation.- 4.2. Weak formulation.- 5. Existence of Optimal Controls.- 5.1. A deterministic result.- 5.2. Existence under strong formulation.- 5.3. Existence under weak formulation.- 6. Reachable Sets of Stochastic Control Systems.- 6.1. Nonconvexity of the reachable sets.- 6.2. Noncloseness of the reachable sets.- 7. Other Stochastic Control Models.- 7.1. Random duration.- 7.2. Optimal stopping.- 7.3. Singular and impulse controls.- 7.4. Risk-sensitive controls.- 7.5. Ergodic controls.- 7.6. Partially observable systems.- 8. Historical Remarks.- 3. Maximum Principle and Stochastic Hamiltonian Systems.- 1. Introduction.- 2. The Deterministic Case Revisited.- 3. Statement of the Stochastic Maximum Principle.- 3.1. Adjoint equations.- 3.2. The maximum principle and stochastic Hamiltonian systems.- 3.3. A worked-out example.- 4. A Proof of the Maximum Principle.- 4.1. A moment estimate.- 4.2. Taylor expansions.- 4.3. Duality analysis and completion of the proof.- 5. Sufficient Conditions of Optimality.- 6. Problems with State Constraints.- 6.1. Formulation of the problem and the maximum principle.- 6.2. Some preliminary lemmas.- 6.3. A proof of Theorem 6.1.- 7. Historical Remarks.- 4. Dynamic Programming and HJB Equations.- 1. Introduction.- 2. The Deterministic Case Revisited.- 3. The Stochastic Principle of Optimality and the HJB Equation.- 3.1. A stochastic framework for dynamic programming.- 3.2. Principle of optimality.- 3.3. The HJB equation.- 4. Other Properties of the Value Function.- 4.1. Continuous dependence on parameters.- 4.2. Semiconcavity.- 5. Viscosity Solutions.- 5.1. Definitions.- 5.2. Some properties.- 6. Uniqueness of Viscosity Solutions.- 6.1. A uniqueness theorem.- 6.2. Proofs of Lemmas 6.6 and 6.7.- 7. Historical Remarks.- 5. The Relationship Between the Maximum Principle and Dynamic Programming.- 1. Introduction.- 2. Classical Hamilton-Jacobi Theory.- 3. Relationship for Deterministic Systems.- 3.1. Adjoint variable and value function: Smooth case.- 3.2. Economic interpretation.- 3.3. Methods of characteristics and the Feynman-Kac formula.- 3.4. Adjoint variable and value function: Nonsmooth case.- 3.5. Verification theorems.- 4. Relationship for Stochastic Systems.- 4.1. Smooth case.- 4.2. Nonsmooth case: Differentials in the spatial variable.- 4.3. Nonsmooth case: Differentials in the time variable.- 5. Stochastic Verification Theorems.- 5.1. Smooth case.- 5.2. Nonsmooth case.- 6. Optimal Feedback Controls.- 7. Historical Remarks.- 6. Linear Quadratic Optimal Control Problems.- 1. Introduction.- 2. The Deterministic LQ Problems Revisited.- 2.1. Formulation.- 2.2. A minimization problem of a quadratic functional.- 2.3. A linear Hamiltonian system.- 2.4. The Riccati equation and feedback optimal control.- 3. Formulation of Stochastic LQ Problems.- 3.1. Statement of the problems.- 3.2. Examples.- 4. Finiteness and Solvability.- 5. A Necessary Condition and a Hamiltonian System.- 6. Stochastic Riccati Equations.- 7. Global Solvability of St

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책