logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

An Introduction to Riemann-Finsler Geometry

An Introduction to Riemann-Finsler Geometry (Hardcover)

Shiing-Shen Chern, David Dai-Wai Bao (지은이)
Springer Verlag
173,160원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
141,990원 -18% 0원
7,100원
134,890원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

An Introduction to Riemann-Finsler Geometry
eBook 미리보기

책 정보

· 제목 : An Introduction to Riemann-Finsler Geometry (Hardcover) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 기하학 > 기하학 일반
· ISBN : 9780387989488
· 쪽수 : 435쪽
· 출판일 : 2000-03-17

목차

One Finsler Manifolds and Their Curvature.- 1 Finsler Manifolds and the Fundamentals of Minkowski Norms.- 1.0 Physical Motivations.- 1.1 Finsler Structures: Definitions and Conventions.- 1.2 Two Basic Properties of Minkowski Norms.- 1.2 A. Euler's Theorem.- 1.2 B. A Fundamental Inequality.- 1.2 C. Interpretations of the Fundamental Inequality.- 1.3 Explicit Examples of Finsler Manifolds.- 1.3 A. Minkowski and Locally Minkowski Spaces.- 1.3 B. Riemannian Manifolds.- 1.3 C. Randers Spaces.- 1.3 D. Berwald Spaces.- 1.3 E. Finsler Spaces of Constant Flag Curvature.- 1.4 The Fundamental Tensor and the Cartan Tensor.- References for Chapter 1.- 2 The Chern Connection.- 2.0 Prologue.- 2.1 The Vector Bundle ? TM and Related Objects.- 2.2 Coordinate Bases Versus Special Orthonormal Bases.- 2.3 The Nonlinear Connection on the Manifold TM \0.- 2.4 The Chern Connection on ? TM.- 2.5 Index Gymnastics.- 2.5 A. The Slash (...)s and the Semicolon (...);s.- 2.5 B. Covariant Derivatives of the Fundamental Tensor g.- 2.5 C. Covariant Derivatives of the Distinguished ?.- References for Chapter 2.- 3 Curvature and Schur's Lemma.- 3.1 Conventions and the hh-, hv-, vv-curvatures.- 3.2 First Bianchi Identities from Torsion Freeness.- 3.3 Formulas for R and P in Natural Coordinates.- 3.4 First Bianchi Identities from "Almost" g-compatibility.- 3.4 A. Consequences from the $$ dx^k \wedge dx^l $$ Terms.- 3.4 B. Consequences from the $$ dx^k \wedge rac{1} {F}\delta y^l $$ Terms.- 3.4 C. Consequences from the $$ rac{1} {F}\delta y^k \wedge rac{1} {F}\delta y^l $$ Terms.- 3.5 Second Bianchi Identities.- 3.6 Interchange Formulas or Ricci Identities.- 3.7 Lie Brackets among the $$ rac{\delta } {{\delta x}} $$ and the $$ F rac{\partial } {{\partial y}} $$.- 3.8 Derivatives of the Geodesic Spray Coefficients Gi.- 3.9 The Flag Curvature.- 3.9 A. Its Definition and Its Predecessor.- 3.9 B. An Interesting Family of Examples of Numata Type.- 3.10 Schur's Lemma.- References for Chapter 3.- 4 Finsler Surfaces and a Generalized Gauss-Bonnet Theorem.- 4.0 Prologue.- 4.1 Minkowski Planes and a Useful Basis.- 4.1 A. Rund's Differential Equation and Its Consequence.- 4.1 B. A Criterion for Checking Strong Convexity.- 4.2 The Equivalence Problem for Minkowski Planes.- 4.3 The Berwald Frame and Our Geometrical Setup on SM.- 4.4 The Chern Connection and the Invariants I, J, K.- 4.5 The Riemannian Arc Length of the Indicatrix.- 4.6 A Gauss-Bonnet Theorem for Landsberg Surfaces.- References for Chapter 4.- Two Calculus of Variations and Comparison Theorems.- 5 Variations of Arc Length, Jacobi Fields, the Effect of Curvature.- 5.1 The First Variation of Arc Length.- 5.2 The Second Variation of Arc Length.- 5.3 Geodesics and the Exponential Map.- 5.4 Jacobi Fields.- 5.5 How the Flag Curvature's Sign Influences Geodesic Rays.- References for Chapter 5.- 6 The Gauss Lemma and the Hopf-Rinow Theorem.- 6.1 The Gauss Lemma.- 6.1 A. The Gauss Lemma Proper.- 6.1 B. An Alternative Form of the Lemma.- 6.1 C. Is the Exponential Map Ever a Local Isometry?.- 6.2 Finsler Manifolds and Metric Spaces.- 6.2 A. A Useful Technical Lemma.- 6.2 B. Forward Metric Balls and Metric Spheres.- 6.2 C. The Manifold Topology Versus the Metric Topology.- 6.2 D. Forward Cauchy Sequences, Forward Completeness.- 6.3 Short Geodesics Are Minimizing.- 6.4 The Smoothness of Distance Functions.- 6.4 A. On Minkowski Spaces.- 6.4 B. On Finsler Manifolds.- 6.5 Long Minimizing Geodesies.- 6.6 The Hopf-Rinow Theorem.- References for Chapter 6.- 7 The Index Form and the Bonnet-Myers Theorem.- 7.1 Conjugate Points.- 7.2 The Index Form.- 7.3 What Happens in the Absence of Conjugate Points?.- 7.3 A. Geodesies Are Shortest Among "Nearby" Curves.- 7.3 B. A Basic Index Lemma.- 7.4 What Happens If Conjugate Points Are Present?.- 7.5 The Cut Point Versus the First Conjugate Point.- 7.6 Ricci Curvatures.- 7.6 A. The Ricci Scalar Ric and the Ricci Tensor Ricij.- 7.6 B. The Interplay between Ric and RiCij.-

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책