logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

일간
|
주간
|
월간

실시간 검색어

검색가능 서점

도서목록 제공

Quantum Mechanics: Concepts and Applications

Quantum Mechanics: Concepts and Applications (Hardcover, 2, Revised)

Nouredine Zettili (지은이)
John Wiley & Sons Inc
459,940원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
377,150원 -18% 0원
18,860원
358,290원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Quantum Mechanics: Concepts and Applications
eBook 미리보기

책 정보

· 제목 : Quantum Mechanics: Concepts and Applications (Hardcover, 2, Revised) 
· 분류 : 외국도서 > 과학/수학/생태 > 과학 > 물리학 > 양자론
· ISBN : 9780470026786
· 쪽수 : 688쪽
· 출판일 : 2009-03-01

목차

Preface to the Second Edition.

Preface to the First Edition.

Note to the Student. 

1. Origins of Quantum Physics.

1.1 Historical Note.

1.2 Particle Aspect of Radiation.

1.3 Wave Aspect of Particles.

1.4 Particles versus Waves.

1.5 Indeterministic Nature of the Microphysical World.

1.6 Atomic Transitions and Spectroscopy.

1.7 Quantization Rules.

1.8 Wave Packets.

1.9 Concluding Remarks.

1.10 Solved Problems.

1.11 Exercises.

2. Mathematical Tools of Quantum Mechanics.

2.1 Introduction.

2.2 The Hilbert Space and Wave Functions.

2.3 Dirac Notation.

2.4 Operators.

2.5 Representation in Discrete Bases.

2.6 Representation in Continuous Bases.

2.7 Matrix and Wave Mechanics.

2.8 Concluding Remarks.

2.9 Solved Problems.

2.10 Exercises.

3. Postulates of Quantum Mechanics.

3.1 Introduction.

3.2 The Basic Postulates of Quantum Mechanics.

3.3 The State of a System.

3.4 Observables and Operators.

3.5 Measurement in Quantum Mechanics.

3.6 Time Evolution of the System’s State.

3.7 Symmetries and Conservation Laws.

3.8 Connecting Quantum to Classical Mechanics.

3.9 Solved Problems.

3.10 Exercises.

4. One-Dimensional Problems.

4.1 Introduction.

4.2 Properties of One-Dimensional Motion.

4.3 The Free Particle: Continuous States.

4.4 The Potential Step.

4.5 The Potential Barrier and Well.

4.6 The Infinite Square Well Potential.

4.7 The Finite Square Well Potential.

4.8 The Harmonic Oscillator.

4.9 Numerical Solution of the Schrödinger Equation.

4.10 Solved Problems.

4.11 Exercises.

5. Angular Momentum.

5.1 Introduction.

5.2 Orbital Angular Momentum.

5.3 General Formalism of Angular Momentum.

5.4 Matrix Representation of Angular Momentum.

5.5 Geometrical Representation of Angular Momentum.

5.6 Spin Angular Momentum.

5.7 Eigen functions of Orbital Angular Momentum.

5.8 Solved Problems.

5.9 Exercises.

6. Three-Dimensional Problems.

6.1 Introduction.

6.2 3D Problems in Cartesian Coordinates.

6.3 3D Problems in Spherical Coordinates.

6.4 Concluding Remarks.

6.5 Solved Problems.

6.6 Exercises.

7. Rotations and Addition of Angular Momenta.

7.1 Rotations in Classical Physics.

7.2 Rotations in Quantum Mechanics.

7.3 Addition of Angular Momenta.

7.4 Scalar, Vector and Tensor Operators.

7.5 Solved Problems.

7.6 Exercises.

8. Identical Particles.

8.1 Many-Particle Systems.

8.2 Systems of Identical Particles.

8.3 The Pauli Exclusion Principle.

8.4 The Exclusion Principle and the Periodic Table.

8.5 Solved Problems.

8.6 Exercises.

9. Approximation Methods for Stationary States.

9.1 Introduction.

9.2 Time-Independent Perturbation Theory.

9.3 The Variational Method.

9.4 The Wentzel-Kramers-Brillou in Method.

9.5 Concluding Remarks.

9.6 Solved Problems.

9.7 Exercises.

10. Time-Dependent Perturbation Theory.

10.1 Introduction.

10.2 The Pictures of Quantum Mechanics.

10.3 Time-Dependent Perturbation Theory.

10.4 Adiabatic and Sudden Approximations.

10.5 Interaction of Atoms with Radiation.

10.6 Solved Problems.

10.7 Exercises.

11. Scattering Theory.

11.1 Scattering and Cross Section.

11.2 Scattering Amplitude of Spinless Particles.

11.3 The Born Approximation.

11.4 Partial Wave Analysis.

11.5 Scattering of Identical Particles.

11.6 Solved Problems.

11.7 Exercises.

A. The Delta Function.

A.1 One-Dimensional Delta Function.

A.2 Three-Dimensional Delta Function.

B. Angular Momentum in Spherical Coordinates.

B.1 Derivation of Some General Relations.

B.2 Gradient and Laplacianin Spherical Coordinates.

B.3 Angular Momentum in Spherical Coordinates.

C. C++ Code for Solving the Schrödinger Equation.

Index.

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책