logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

MCM Handbook

MCM Handbook (Hardcover)

Dirk P. Kroese, Dirk P. Kroese, Thomas Taimre, Zdravko I. Botev (지은이)
Wiley
325,410원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
244,050원 -25% 0원
7,330원
236,720원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

MCM Handbook
eBook 미리보기

책 정보

· 제목 : MCM Handbook (Hardcover) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 확률과 통계 > 일반
· ISBN : 9780470177938
· 쪽수 : 772쪽
· 출판일 : 2011-03-15

목차

Preface.

Acknowledgments.

1 Uniform Random Number Generation.

1.1 Random Numbers.

1.2 Generators Based on Linear Recurrences.

1.3 Combined Generators.

1.4 Other Gnerators.

1.5 Tests for Random Number Generators.

References.

2 Quasirandom Number Generation.

2.1 Multidimensional Integration.

2.2 Van der Corput and Digital Sequences.

2.3 Halton Sequences.

2.4 Faure Sequences.

2.5 Sobol’ Sequences.

2.6 Lattice Methods.

2.7 Randomization and Scrambling.

References.

3 Random Variable Generation.

3.1 Generic Algorithms Based on Common Transformations.

3.2 Copulas.

3.3 Generation Methods for Various Random Objects.

References.

4 Probability Distributions.

4.1 Discrete Distributions.

4.2 Continuous Distributions.

4.3 Multivariate Distributions.

References.

5 Random Process Generation.

5.1 Gaussian Processes.

5.2 Markov Chains.

5.3 Markov Jump Processes.

5.4 Poisson Processes.

5.5 Wiener Process and Brownian Motion.

5.6 Stochastic Differential Equations and Diffusion Processes.

5.7 Brownian Bridge.

5.8 Geometric Brownian Motion.

5.9 Ornstein-Uhlenbeck Process.

5.10 Reflected Brownian Motion.

5.11 Fractional Brownian Motion.

5.12 Random Fields.

5.13 Lévy Processes.

5.14 Time Series.

References.

6 Markov Chain Monte Carlo.

6.1 Metropolis-Hastings Algorithm.

6.2 Gibbs Sampler.

6.3 Specialized Samplers.

6.4 Implementation Issues.

6.5 Perfect Sampling.

References.

7 Discrete Event Simulation.

7.1 Simulation Models.

7.2 Discrete Event Systems.

7.3 Event-Oriented Approach.

7.4 More Examples of Discrete Event Simulation.

References.

8 Statistical Analysis of Simulation Data.

8.1 Simulation Data.

8.2 Estimation of Performance Measures for Independent Data.

8.3 Estimation of Steady-State Performance Measures.

8.4 Emprical Cdf.

8.5 Kernal Density Estimation.

8.6 Resampling and the Bootstrap Method.

8.7 Goodness of Fit.

References.

9 Variance Reduction.

9.1 Variance Reduction Example.

9.2 Antithetic Random Variables.

9.3 Control Variables.

9.4 Conditional Monte Carlo.

9.5 Stratified Sampling.

9.6 Latin Hypercube Sampling.

9.7 Importance Scaling.

9.8 Quasi Monte Carlo

References.

10 Rare-Event Simulation.

10.1 Efficiency of Estimators.

10.2 Importance Sampling Methods for Light Tails.

10.3 Conditioning Methods for Heavy Tails.

10.4 State-Dependent Importance Sampling.

10.5 Cross-Entropy Method for Rare-Event Simulation.

10.6 Splitting Method.

References.

11 Estimation of Derivatives.

11.1 Gradient Estimation.

11.2 Finite Difference Method.

11.3 Infinitesimal Perturbation Analysis.

11.4 Score Function Method.

11.5 Weak Deriatives.

11.6 Sensitivity Analysis for Regenerative Processes.

References.

12 Randomized Optimization.

12.1 Stochastic Approximation.

12.2 Stochastic Counterpart Method.

12.3 Simulated Annealing.

12.4 Evolutionary Algorithms.

12.5 Cross-Entropy Method for Optimization.

12. 6 Other Randomized Optimization Techniques.

References.

13 Cross-Entropy Method.

13.1 Cross-Entropy Method.

13.2 Cross-Entropy Method for Estimation.

13.3 Cross-Entropy Method for Optimization.

References.

14 Particle Methods.

14.1 Sequential Monte Carlo.

14.2 Particle Splitting.

14.3 Splitting for Static Rare-Event Probability Estimaton.

14.4 Adaptive Splitting Algorithm.

14.5 Estimation of Multidimensional Integrals.

14.6 Combinatorial Optimization via Splitting.

14.7 Markov Chain Monte Carlo With Splitting.

References.

15 Applications to Finance.

15.1 Standard Model.

15.2 Pricing via Monte Carlo Simulation.

15.3 Sensitivities.

References.

16 Applications to Network  Reliability.

16.1 Network Reliability.

16.2 Evolution Model for a Static Network.

16.3 Conditional Monte Carlo.

16.4 Importance Sampling for Network Reliability.

16.5 Splitting Method.

References.

17 Applications to Differential Equations.

17. 1 Connections Between Stochastic and Partial Di_erential Equations.

17.2 Transport Processes and Equations.

17.3 Connections to ODEs Through Scaling.

References.

Appendix A: Probability and Stochastic Processes.

Appendix B: Elements of Mathematical Statistics.

Appendix C: Optimization.

Appendix D: Miscellany.

References.

Acronyms and Abbreviations.

List of Symbols.

List of Distributions.

Index. 

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책