logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

[eBook Code] Nonlinear Programming

[eBook Code] Nonlinear Programming (eBook Code, 3rd)

(Theory and Algorithms)

목타르 S. 바자라, 하니프 D. 셰랄리, C. M. 셰티 (지은이)
Wiley-Interscience
247,800원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
198,240원 -20% 0원
0원
198,240원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

[eBook Code] Nonlinear Programming
eBook 미리보기

책 정보

· 제목 : [eBook Code] Nonlinear Programming (eBook Code, 3rd) (Theory and Algorithms)
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 응용수학
· ISBN : 9780470322185
· 쪽수 : 872쪽
· 출판일 : 2008-04-21

목차

Chapter 1 Introduction.

1.1 Problem Statement and Basic Definitions.

1.2 Illustrative Examples.

1.3 Guidelines for Model Construction.

Exercises.

Notes and References.

Part 1 Convex Analysis.

Chapter 2 Convex Sets.

2.1 Convex Hulls.

2.2 Closure and Interior of a Set.

2.3 Weierstrass's Theorem.

2.4 Separation and Support of Sets.

2.5 Convex Cones and Polarity.

2.6 Polyhedral Sets, Extreme Points, and Extreme Directions.

2.7 Linear Programming and the Simplex Method.

Exercises.

Notes and References.

Chapter 3 Convex Functions and Generalizations.

3.1 Definitions and Basic Properties.

3.2 Subgradients of Convex Functions.

3.3 Differentiable Convex Functions.

3.4 Minima and Maxima of Convex Functions.

3.5 Generalizations of Convex Functions.

Exercises.

Notes and References.

Part 2 Optimality Conditions and Duality.

Chapter 4 The Fritz John and Karush-Kuhn-Tucker Optimality Conditions.

4.1 Unconstrained Problems.

4.2 Problems Having Inequality Constraints.

4.3 Problems Having Inequality and Equality Constraints.

4.4 Second-Order Necessary and Sufficient Optimality Conditions for Constrained Problems.

Exercises.

Notes and References.

Chapter 5 Constraint Qualifications.

5.1 Cone of Tangents.

5.2 Other Constraint Qualifications.

5.3 Problems Having Inequality and Equality Constraints.

Exercises.

Notes and References.

Chapter 6 Lagrangian Duality and Saddle Point Optimality Conditions.

6.1 Lagrangian Dual Problem.

6.2 Duality Theorems and Saddle Point Optimality Conditions.

6.3 Properties of the Dual Function.

6.4 Formulating and Solving the Dual Problem

6.5 Getting the Primal Solution.

6.6 Linear and Quadratic Programs.

Exercises.

Notes and References.

Part 3 Algorithms and Their Convergence.

Chapter 7 The Concept of an Algorithm.

7.1 Algorithms and Algorithmic Maps.

7.2 Closed Maps and Convergence.

7.3 Composition of Mappings.

7.4 Comparison Among Algorithms.

Exercises.

Notes and References.

Chapter 8 Unconstrained Optimization.

8.1 Line Search Without Using Derivatives.

8.2 Line Search Using Derivatives.

8.3 Some Practical Line Search Methods.

8.4 Closedness of the Line Search Algorithmic Map.

8.5 Multidimensional Search Without Using Derivatives.

8.6 Multidimensional Search Using Derivatives.

8.7 Modification of Newton's Method: Levenberg-Marquardt and Trust Region Methods.

8.8 Methods Using Conjugate Directions: Quasi-Newton and Conjugate Gradient Methods.

8.9 Subgradient Optimization Methods.

Exercises.

Notes and References.

Chapter 9 Penalty and Barrier Functions.

9.1 Concept of Penalty Functions.

9.2 Exterior Penalty Function Methods.

9.3 Exact Absolute Value and Augmented Lagrangian Penalty Methods.

9.4 Barrier Function Methods.

9.5 Polynomial-Time Interior Point Algorithms for Linear Programming Based on a Barrier Function.

Exercises.

Notes and References.

Chapter 10 Methods of Feasible Directions.

10.1 Method of Zoutendijk.

10.2 Convergence Analysis of the Method of Zoutendijk.

10.3 Successive Linear Programming Approach.

10.4 Successive Quadratic Programming or Projected Lagrangian Approach.

10.5 Gradient Projection Method of Rosen.

10.6 Reduced Gradient Method of Wolfe and Generalized Reduced Gradient Method.

10.7 Convex-Simplex Method of Zangwill.

10.8 Effective First- and Second-Order Variants of the Reduced Gradient Method.

Exercises.

Notes and References.

Chapter 11 Linear Complementary Problem, and Quadratic, Separable, Fractional, and Geometric Programming.

11.1 Linear Complementary Problem.

11.2 Convex and Nonconvex Quadratic Programming: Global Optimization Approaches.

11.3 Separable Programming.

11.4 Linear Fractional Programming.

11.5 Geometric Programming.

Exercises.

Notes and References.

Appendix A Mathematical Review.

Appendix B Summary of Convexity, Optimality Conditions, and Duality.

Bibliography.

Index.

저자소개

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책